

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN

FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

THESIS

David J. Wakefield, Jr., Captain, USAF

AFIT/GLM/ENS/01M-24

 DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright - Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense or the U.S.
Government.

AFIT/GLM/ENS/01M-24

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN

FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

David J. Wakefield, Jr., B.S.

Captain, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GLM/ENS/01M-24

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN

FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

 TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

David J. Wakefield, Jr., B.S.
Captain, USAF

Approved:

/s/
Lt Col Alan W. Johnson, Advisor Date
Assistant Professor of Logistics Management
Department of Operational Sciences

/s/
Major Stephen M. Swartz, Co-Advisor Date
Assistant Professor of Logistics Management
Department of Operational Sciences

/s/
Dr. Gary B. Lamont, Reader Date
Professor of Electrical Engineering
Department of Electrical and Computer Engineering

 9 Mar 01_

 9 Mar 01_

 9 Mar 01_

 iv

Acknowledgements

 While I am the author of this thesis, many other people have made significant

contributions to its very existence.

First and foremost, I dedicate this to my wife, daughter, and son for knowing that

my job is not an easy one, and doing everything they can to make it easier. Thanks also

to dad, “J”, and “G” for the moral support and knowing that I’m not anti-social, I’m just

an egghead. Special thanks to my mom, who can always be depended on for help.

I’m also very grateful to my thesis committee for their help during this research:

- Lt Col Alan Johnson, for keeping the leash long, letting me work through the

hard stuff, and discover what it means to do research.

- Maj Stephen Swartz, for helping get into AFIT (something he may now regret).

- Dr. Gary Lamont, for inviting me into the EA fold and keeping me involved.

I was very fortunate to have a large group of supporters during my year and a half

here at AFIT. I mention a few of them here:

- The other “Golden Boys”, for sticking it out with me.

- The “Back Row Gang”, for never letting me forget how late I am.

- Jonathan, for the shoes.

- Steve Oliver, Hakan Bal, and Mike Colvard, for helping me make the 2000 lab a

24 hour operation.

Finally, I am deeply indebted to Capt Jesse Zydallis, who gives of himself freely

even when he himself bears a heavy burden.

 David J. Wakefield, Jr.

 v

Table of Contents

Page

Acknowledgements ……………………………………………………………………….iv

List of Figures…………………………………………………………………………… vii

List of Tables……………………………………………………………………………...ix

Abstract…………………………………………………………………………….……... x

 I. Introduction…………………………………………………………………………...1
Background.. 1
Problem Statement... 4
Research Questions.. 4
Research Methodology .. 5
Assumptions .. 5
Scope/Limitations .. 6
Summary.. 7

 II. Literature Review……………………………………………………………………. 9
Introduction.. 9
MOP Overview.. 9

Global Optimization. .. 11
Techniques for Solving MOPs.. 12

Modern Methods for Handling MOPs... 13
Local Search in Objective Space. ... 14
Population Based Approach ... 16

Genetic Algorithms.. 17
Basic Operation…… 18
Initialization………. .. 19
Representation…….. .. 19
Fitness Evaluation… .. 21
Genetic Operators… .. 21
Parameter Settings... .. 25
The Schema Theorem. .. 28
Constraint Handling. .. 30
Multiobjective GAs..31

Summary.. 41

III. Methodology………………………………………………………………………... 42
Introduction.. 42
Model Formulation .. 42
MOP Formulation.. 45

 vi

Target MOP ... 49
Motivation and Objectives... 53
Performance Measures... 59
Experimental Design ... 60

Computational Environment... 61
MOMGA-II Parameter Settings ... 64

Summary.. 64

IV. Results…………………………………………………………………………….…65
Introduction.. 65
Statistical Analysis... 65
Absolute Performance Comparison... 65
Execution Timing Analysis ... 67
Demonstration of Level-wise Nondominated Force Mix Sets 68
Summary.. 70

 V. Conclusion…………………………………………………………………………..71
Introduction.. 71
Conclusions.. 73
Limitations... 74
Recommendations.. 76
Future Research ... 77
Summary.. 79

Appendix A: Pareto Concepts…………………………………………………………... 80

Appendix B: Advanced Logistics Program (ALP) Pilot Problem……………………… 81

Appendix C: Source Code for ENUMERATION.C……………………………………. 86

Appendix E: Source Code for Pareto_processing.c…………………………………….. 97

Appendix F: Raw Data and Experimental Statistics…………………………………... 105

Appendix G: 3D Plots of PFtrue and PFknown Using Alternative Parameter Values…… 111

Appendix H: 3D Plots of PFknown for Resource Levels 1 –5…………………………...116

Bibliography…………………………………………………………………………….119

Vita…………………………………………………………………………….……….. 125

 vii

List of Figures
Figure Page

1. ALP Operational Concept .. 2

2. Global and Local Maxima.. 12

3. Pseudo Code for a Simple Genetic Algorithm... 19

4. Example of Single-point Crossover ... 23

5. Pseudo Code for a Messy Genetic Algorithm.. 36

6. Example of Cut-n-Splice Operation... 37

7. MOP Processing Model ... 43

8. Thread of Progression .. 44

9. MOMGA-II String Length vs. Memory Required ... 55

10. Three Views of the Target MOP Tri-objective Space for Resource Level 1 58

11. Problem Size vs. Execution Time .. 68

12. Matching Resources to Tasks... 83

13. Kruskal-Wallis H-Test Results for Final Generational Distance 109

14. Kruskal-Wallis H-Test Results for ONVG .. 110

15. Plot of PFtrue and PFknown for BB size 4 ... 111

16. Plot of PFtrue and PFknown for BB size 8 ... 112

17. Plot of PFtrue and PFknown for BB size 2 ... 112

18. Plot of PFtrue and PFknown for Pcut = 0... 113

19. Plot of PFtrue and PFknown for Pcut = 0.2.. 113

20. Plot of PFtrue and PFknown for Psplice = 0.8... 114

21. Plot of PFtrue and PFknown for Psplice = 0.6... 114

 viii

22. Plot of PFtrue and PFknown for initial population size = 600...................................... 115

23. Plot of PFtrue and PFknown for initial population size = 1200.................................... 115

24. PFknown Plotted With PFtrue for Resource Level 1.. 116

25. PFknown Plotted for Resource Level 2 ... 117

26. PFknown Plotted for Resource Level 3 ... 117

27. PFknown Plotted for Resource Level 4 ... 118

28. PFknown Plotted for Resource Level 5 ... 118

 ix

List of Tables

Table Page

1. Tasks... 50

2. Resource Levels ... 50

3. Desired Task Capability Ratios.. 51

4. Desired Capability Matrix.. 51

5. Task Suitability / Lift Consumption Matrix... 51

6. Experimental Parameter Settings ... 63

7. MOMGA-II Parameter Settings .. 63

8. Asset-Mission Task Preference Matrix .. 81

9. Raw Data for Final Generational Distance .. 105

10. Descriptive Statistics for Final Generational Distance .. 106

11. Raw Data for Overall Nondominated Vector Generation.. 107

12. Descriptive Statistics for Overall Nondominated Vector Generation...................... 108

 x

AFIT/GLM/ENS/01M-24

Abstract

 AFIT research in support of the Advanced Logistics Project is directed at

developing a Mission-Resource Value Assessment Tool for rationally assigning relative

value to resources and identifying alternative force mixes to logistics and operational

planners. Research of factors that affect force mix composition has been strictly limited

to how the operating environment of USAF combat aircraft influences their performance

in specified aerospace missions. In contrast, this research makes use of an aircraft's

designed suitability to perform specified aerospace missions in order to examine the

tradeoff between mission suitability and the amount of lift needed to deploy and operate

the asset.

 An Evolutionary approach was applied to a tri-objective constrained optimization

problem with 15 decision variables with the goal of producing five Pareto optimal sets of

force mixes corresponding to five progressively larger sortie capability levels. Analysis

of the results includes absolute performance comparisons using different operating

parameter settings, and time complexity in relation to problem scale. Preliminary results

were also generated from a version of the algorithm that uses a solution repair function.

These results help to assess the viability of using a multi-objective fast messy genetic

algorithm to identify well balanced force mixes.

 xi

Know your limits. Now shatter them.

djw

1

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN

FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

I. Introduction

Background

Death by inventory is the concept of stockpiling excessive inventory to

compensate for poor logistics management. This is a difficult and expensive business

practice, and unfortunately, is employed in DoD operations. Take, for example, the

strategic movement of personnel and equipment during the Gulf War. Although branded

a success by our leaders in DoD, the war served to highlight logistical problems. “One of

USTRANSCOM’s most intractable and high-visibility problems during Desert

Shield/Desert Storm was a backlog of sustainment cargo at aerial pots of embarkation,

primarily in the United States” (Matthews and Holt, 1996:84). The amount of arriving

cargo also overwhelmed the destination points. “Half of the 40,000 bulk containers

shipped into the theater had to be opened in order to identify their contents, and most of it

failed to contribute in any way to our success on the battlefield” (Muczyk, 1997:89).

These problems illustrate a serious gap in what the combatant commander or operator

wants to accomplish and what the logistician can make available. This disconnect

between operations and logistics is important, as Paul Judge notes:

The warfighting commander demands visibility of assets and requires confidence
in rapid availability. Without direct knowledge that commodities and reparables

 2

are available and capable of supply in a specified time period, the field
commander is forced to stock-pile anticipatory requirements. (1998:25)

 Judge also noted that recent studies concerning modern defense logistics supports

a solution that implements “a near real-time information system that cuts across all

logistic functional areas and is not excessively dependent on manual entry for raw

information” (1998:8).

The Advanced Logistics Project (ALP) is an effort by the Defense Advanced

Research Projects Agency (DARPA) to develop a distributed computing architecture that

links current and planned logistics information systems to the deliberate and crisis action

planning processes, databases, and policies--an end-to-end system linking operations and

logistics.

Figure 1. ALP Operational Concept (Carrico, 2000)

1 0

Specify Opera tional
Requ irements

De velop
De tailed Plan

F orc e s Mo de s a nd Tim e

e

O perational Concept

E nd-to-End
Logist ics
System

Feed Back Logistics
Supportab ility

J3 J4

T ight Ops / Log
P artnership

T ig ht Ops / Log
P artner ship

10

Specify Opera tional
Requirements

De velop
De tailed Plan

F o rc e s
Mo de s a nd Tim e

e

O perational Concept

E nd-to-End
Logist ics
System

Feed Back Logistics
Supportab ility

J3 J4

T ight Ops / Log
P artnership

T ight Ops / Log
P artnership

 3

The deliverable program is expected to give logistics planners a tool that uses

real-time data to rapidly develop a campaign specific logistics plan and perform dynamic

replanning (Carrico, 2000).

ALP leverages the revolution in technology to narrow the gap between operations

and logistics, giving planners the capability to review multiple deployment plans that are

based on current information. But when comparing numerous plans and scenarios, how

does one answer, “What is best?” In other words, from a pool of available resources, is

there a mix of those resources that would be preferred by the combatant commander over

all others? AFIT research in support of ALP is directed at developing a Mission-

Resource Value Assessment Tool (M-R VAT) that “rationally assigns relative value to

material resources” (Swartz, 1999) and identifies alternative force mix compositions to

planners.

 A Mission Ready Resource (MRR) is a combination of an asset type and its

resources, e.g. aircraft, pilot, fuel, munitions, support equipment and personnel, etc., that

is designed to have a certain suitability for a single task. A combination of MRR types is

defined to be a MRR set or force mix. To demonstrate, assume that a notional aircraft F,

has two configurations, FA and FB, which constitutes two MRR types. Further, if the

aircraft could be prepared and flown three times per day, then it would represent three

MRRs per day. These three MRR’s could either be all FA configurations, or all FB

configurations, or some combination of the two configurations. A MRR is consumed in

the performance of its task, i.e. fuel, munitions, engine cycles, etc. The goal of a

logistics plan is to provide the combatant commander with the Mission Ready Resource

(MRR) sets that satisfy the time-phased need for those resources. In other words, the

 4

combatant commander desires to fulfill a task with the best combination of MRRs that is

dependent on resource suitability to a given task, resource level, and time, along with

theater-specific factors. There is most likely a number of acceptable MRR sets for which

certain combinations of MRRs may be assessed as having equivalent suitability. It is

desirable for the planner to select the MRR combination that best maximizes the time-

and resource level dependent suitability.

An MRR set provides a certain suitability and capability to the combatant

commander, but at a cost: consumption of lift resources. The finite lift capability of the

U.S. military is a key constraint on the amount and timing of resources flowing into a

target area. Therefore, it is desirable to deliver an MRR combination that minimizes lift.

There are then two competing objectives that the planner must deal with in order to

present the best MRR combination to the decision maker: maximize asset suitability and

minimize lift consumption.

Problem Statement

Given a choice among time-phased asset sets, simultaneously minimize lift

resource consumption (cost) and maximize asset set suitability over time.

Research Questions

1. Which methodologies can be used to trade-off lift cost and asset suitability and result

in an asset mix that is preferred over others?

2. What are the forms of decision and objective spaces?

3. How should the multiobjective optimization approach be evaluated?

 5

4. Does the selected approach result in an acceptable solution to the research problem in

a reasonable amount of time?

Research Methodology

 The two objectives, maximize suitability/minimize lift, are in conflict, so it may

be that no single optimum solution exists with respect to both objectives. It is desirable

to ascertain whether an exact solution can be obtained within reasonable time. If not, an

acceptable compromise solution must be found. Candidate approaches exist and are well

documented in literature. Candidate approach selection is based on its applicability to the

problem, its overall utility, and its utilization of computational resources.

For any acceptable asset set, the combination of lift costs for all asset sets over a

given period is constrained by the maximum throughput of the transportation pipeline

during that period. For the initial model formulation, it is assumed that the combined lift

will not exceed the maximum available lift. A constraint can be added to subsequent

models in a way that limits asset set selection to allocated lift consumption.

Assumptions

The combinatorial nature of this research necessitates the use of a relatively small

set of assets with which to explore the algorithmic search for an acceptable solution.

Additionally, actual asset capability with regard to specific missions may be classified.

Therefore, this research is constructed around a notional Air Expeditionary Force,

comparable in size and diversity to that depicted in the ALP Pilot Problem (Swartz,

1999). No actual assessments of aircraft suitability or lift cost will be used. The results

 6

of this research may be sensitive to scale in terms of time required to produce a set of

acceptable solutions.

It is difficult to determine what the actual logistical footprint is for a given asset

set. The logistics support for a force is often undefined until just hours prior to

movement (Judge, 1998:32). It was noted during Desert Storm that “the actual material

shipped grew in size without anyone’s knowledge and certainly without any tools to

predict the eventual impact” (Lynn, 1997:15). To be of use, this research assumes that

asset set lift consumption is both sufficiently accurate and available for planning.

Research conducted by Matt Goddard suggests that, for F-16s, the relationship of asset

quantity to consumption is linear (2001).

Scope/Limitations

 In their research on a campaign planning decision support tool, Christopher Buzo

and Paul Filcek proposed a comparison of competing sets of combat aircraft assets based

on two criteria (Buzo, 2000:2, Filcek, 2001). The first criterion is the intrinsic suitability

of a MRR to one or more specific missions. For instance, a properly configured F-16C is

capable of adequately performing many roles such as Air Interception, Short-Range

Reconnaissance, and Air-to-Air. In contrast, a B-2’s intrinsic suitability is relatively

confined to Strategic Bombing.

 The second criterion is based upon situation specific or extrinsic factors of the

campaign itself. Such factors modify the task suitability of MRRs in certain scenarios.

For example, a planner with knowledge of an enemy with a high anti-air capability would

alter a force mix in favor of aircraft with a high absolute suitability in air defense

 7

suppression. Political issues are also extrinsic factors of a campaign, forcing planners to

consider over-flight rules, coalition participation, and beddown constraints, to name a

few.

 Buzo’s and Filcek’s research of factors that would affect force mixes was strictly

limited to extrinsic factors of USAF combat aircraft to perform specific aerospace

missions (2000, 2001). In contrast, this research makes use of the intrinsic suitability of

MRRs to examine the tradeoff of between MRR suitability against MRR lift cost—

extrinsic factors are not considered.

 Discussion of operational plans and actual task suitability may be classified.

Therefore, this research and its conclusion is restricted to the unclassified realm.

Summary

 This chapter illustrated the disconnect between operations planners and logistics

planners and ALP’s intention to close that gap. AFIT research is centered on providing a

decision support tool that would help campaign planners select the best force mix from a

pool of combinations. The problem of force mix selection can be handled as a

multiobjective optimization of two competing objectives: minimize lift resource

consumption (cost) and maximize MRR task suitability. This research proposes to

develop a methodology for presenting the decision maker with a set of acceptable force

mixes after which an extrinsic assessment is then made and the user-defined best force

mix is selected.

 Chapter II provides a background on multiobjective optimization, discusses global

versus local optimization, and reviews classic and modern multiobjective techniques.

 8

Chapter III describes the methodology used to construct the multiobjective problem and

evaluate the solution approach. Chapter IV details the results using the selected

multiobjective optimization methodology. Chapter V provides conclusions on research

contributions and makes recommendations for further research.

 9

II. Literature Review

Introduction

 Mathematical optimization is the formal title given to the branch of computational

science that seeks to answer the question ‘What is best?’ for problems in which the

quality of any answer can be expressed as a numerical value. Such problems arise in all

areas of mathematics, the physical, chemical, and biological sciences, engineering,

architecture, economics, and management, and the range of techniques available to solve

them is nearly as wide. In practical problems, we often want to optimize more than one

measure of performance at once.

 This research is concerned with a particular problem class: multiobjective

optimization problems (MOPs). The purpose of this chapter is to provide a broad

overview of the field in order answer the first research question: “which methodologies

can be used to trade-off lift cost and asset suitability and result in an asset mix that is

preferred over others?” Following an overview on the MOP class, modern approaches to

handling MOPs are presented.

MOP Overview

 The goal of an optimization problem can be formulated as follows: find the

combination of parameters (independent variables) that optimize (maximize or minimize)

a given quantity, possibly subject to some restrictions on the allowed parameter ranges.

The objective function is the quantity to be optimized. The parameters that can be

changed are the decision variables that represent discrete solutions of a combinatorial

 10

problem (Reeves, 1995:2). The restrictions on parameter values are termed constraints.

For convenience of mathematical treatment, all problems in this thesis are assumed to

have minimization objectives unless stated otherwise.

 To solve a decision-making problem analytically, it is helpful to state the problem

in numerical terms. Given that an objective, O, has a corresponding n-dimensional set of

alternatives, X, the criterion for the objective is defined as an objective function:

 1:f X → (2.1)

where f is a mapping that may be linear or non-linear (Van Veldhuizen, 1999:2-2). The

general form of an MOP with p objectives is

 minimize:

 1 2() ((), (), , ()) over pf x f x f x f x x X= ∈… (2.2)

subject to:

 () 0 1, 2, ,ic x i m′= = … (2.3)

 () 0 1, ,ic x i m m′≥ = + … (2.4)

where x is the column vector of the n independent variables, and ci(x) is the set of

constraint functions that, depending on the situation, may or may not be included in the

problem (Sawaragi, et al., 1985:2).

 In an MOP, it is difficult to obtain a unique optimal solution. This is because the

problem’s objectives are usually in conflict with one another: one cannot improve the

performance of a particular objective without causing a corresponding deterioration in

performance in one or all of the others. Examples of conflicting objectives may be

maximizing speed and safety in a vehicle, or minimizing acquisition cost and schedule of

 11

a new aircraft while maximizing its performance. Classical methods of dealing with this

problem produce a solution by combining objectives in some way that is usually a

subjective expression of an a priori not well understood trade-off surface (Fonseca and

Fleming, 1993:1, Horn et al. 1993:1, Deb, 1999b:4, Ehrgott and Gandibleux, 2000:12,

Taber et al., 1999:1). By treating the problem as multiple, competing objectives, the

result is a set of solutions in decision variable space whose components represent a trade-

off in the objective function space. A decision maker implicitly chooses an acceptable

solution (or solutions) by selecting one or more of these alternatives (Van Veldhuizen,

1999:2-2). Ideally, the alternatives should be selected from a set of equally preferred

solutions called the Pareto optimal set, or simply P. Pareto optimal solutions are also

termed efficient or admissible solutions (Yu, 1985:22). The mapping of P to the

objective space forms the Pareto front, PF. The Pareto front is also known as the

nondominated front. The reader is referred to Appendix A for additional discussion of

Pareto concepts.

Global Optimization. The desired solution to an optimization problem is the true

or global optimum. The strict definition of the global optimum (minimum) x′ of f(x) is

 () () for all (), ,f x f y y V x y x′ ′< ∈ ≠ (2.5)

where V(x) is the set of feasible values of the decision variables x (Allen, et al., 1996). A

complication that arises in nonlinear optimization is that a local optimum need not be a

global optimum. For example, consider the function of a single variable plotted in Figure

2. Over the interval 0 ≤ x ≤ 20, this function has three local maxima—x = 3.8, x = 10.2,

and x = 16.7—but only one of these—x = 3.8—is the global maximum.

 12

5 10 15 20

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Figure 2. Global and Local Maxima

Finding the global optimum of a general mixed integer MOP is NP-Complete and

MOP solutions that satisfy all constraints and globally optimize all objective functions

may not even exist (Van Veldhuizen, 1999:2-2).

Techniques for Solving MOPs. Techniques for solving MOPs have existed for

years and usually rely upon either enumerative or approximation approaches (Ehrgott and

Gandibleux, 2000:12, 20). For MOPs, it is from the Pareto optimal set that an informed

decision maker chooses a compromise solution. Ideally, the presented set is the true

Pareto optimal set Ptrue that corresponds with the true Pareto front PFtrue. However,

complete enumeration of solutions for even a reasonable MOP is impractical from both

computational and decision making standpoints.

A MOP is required to pare down the solution set to one in which the decision

maker can feasibly use to select a solution that represents the best tradeoff between

objectives. In a real-world problem with real-valued solutions, the presented Pareto

optimal set Pknown is a discretized approximation or subset of a continuous Ptrue.

 13

According to Reeves, this kind of solution tends to favor an approximate or heuristic

approach to finding it (1995:11). While an exact model to a real-world problem is

beyond our reach, “it may be possible to model the real-world problem rather more

accurately than is possible than if an exact algorithm is used” (Reeves, 1995:11). A

heuristic allows us to solve optimization problems “in ways that are less than perfect yet

of considerable practical value” (Harel, 1987:344).

Deterministic heuristics, whose members include, but are not limited to, greedy

algorithms, descent algorithms, and deterministic linear / non-linear programming

methods, use problem domain knowledge to shrink the solution space (Van Veldhuizen,

1999:2-10). For any heuristic, a reduction in computational cost comes without being

able to guarantee either feasibility or optimality. Further, deterministic algorithms, when

applied to MOPs, suffer from their poor handling of irregularities in the search space—

high-dimensional, discontinuous, multimodal, and / or NP-Complete—and can be

expected to produce only local solutions (Van Veldhuizen, 1999:1-3, 2-12, Reeves,

1995:6). MOPs are usually better handled by flexible and more robust heuristic

approaches (Reeves: 1995:11).

When systematic search methods fail, stochastic techniques are used. The

algorithms discussed in the following sections all employ some form of random search.

Modern Methods for Handling MOPs

Heuristic approaches are typically designed for a specific problem and are not

suited for a wide range of applications (Ehrgott and Gandibleux, 2000:15). In contrast, a

metaheuristic employs a master strategy to take advantage of the search space and guide

 14

the search (Ehrgott and Gandibleux, 2000:15). Metaheuristics are much more general in

their application. Recent advances in computational power have pushed metaheuristics to

the forefront. Simulated Annealing (SA), Tabu Search (TS), and Evolutionary

Algorithms (EAs) are examples of metaheuristics that have been researched in great

depth and have produced superior results, in terms of both solution quality and

computational efficiency, in a wide variety of applications (Ehrgott and Gandibleux,

2000:15). All methods rely heavily on computing skills for practical implementation.

There are two main approaches used by metaheuristics: 1) local search in

objective space and 2) population based.

Local Search in Objective Space. Based on the principle of search directions, this

approach starts from some initial solution and proceeds in a given search direction to

focus on a portion of the nondominated front. The search proceeds iteratively in other

search directions in order to approximate the entire Pareto front. “At any time the search

mechanism uses only one solution and an iteration tries to attract the solution generated”

towards the Pareto front along the given direction (Ehrgott and Gandibleux, 2000:16).

Hill Climbing, Simulated Annealing (SA) and Tabu Search are examples of the

first approach. Hill climbing begins with a single random solution that is perturbed to

change its evaluation. After several such perturbations, the best evaluation is chosen as

the next starting point. Continuing on in this way eventually results in reaching an

optimum. However, it is not known whether it has reached local or global optimum. The

search space can be explored by starting repeatedly with a new random solution in hopes

of finding a better solution (Caryl, no date).

 15

SA employs an analogy between the way in which a metal cools and freezes into

a minimum energy crystalline structure, and the search for a minimum in a general

system. At high temperatures, the molecules of a liquid move freely. As the liquid cools,

that mobility becomes restricted and the molecules achieve crystalline form and the

system’s minimum energy state, i.e. global optimum.

Like hill climbing, SA randomly perturbs the objective function in a way that

will, for a given change, causes a decrease and for another change causes an increase.

But instead of selecting the best evaluation and continuing on (analogous to rapidly

cooling the liquid), SA introduces an element of randomness: a change that does not

improve upon the current optimum is executed with a probability p < 1. This is typically

based on the Boltzmann probability distribution:

 ()
E
kTP E e

−
∼

where E is the energy of the state, k is Boltzmann’s constant, and T is the temperature.

This equation means that the probability of finding a particle with energy E is

proportional to the exponential of –E divided by the product of k and T (Rappe, no date).

So at a given temperature, a system can be in a range of possible energy states. A higher

temperature increases the likelihood of a high energy state. Simulated annealing makes

use of the fact that at low temperatures, there is still of chance of being in a high energy

state, thus allowing a jump out of a local minima. This random perturbation gives an SA

its ability to avoid being trapped at a local optimum (Reeves, 1995:26).

 An SA implementation tends to be problem specific. The choice of the

temperature or annealing schedule depends on the expected range of function values and

 16

the shape of the function surface. Experimentation is required to obtain a method that

works well for a particular problem.

TS is can also be employed as a stochastic method, but rather than using random

moves, TS employs a directed search along with a memory to imitate intelligent

processes (Reeves, 1995:13). TS is a form of neighborhood search. Beginning with a

solution within a defined neighborhood, the algorithm proceeds iteratively to visit a series

of locally optimal solutions. At each iteration, a best neighbor is chosen to replace the

current solution. To allow the search to move beyond local optima, a list of moves that

are not allowed or tabu is used. This list prevents recently visited solutions from being

considered for a given number of iterations of the algorithm (Reeves, 1995:83, 86-88).

Population Based Approach. The population based approach takes advantage of

information carried by a population of solutions. Heuristics using this method

predominantly fall under the category of Evolutionary Algorithms (EAs), a class that uses

the evolutionary concepts of survival of the fittest and generational improvement as its

inspiration.

Despite the probabilistic nature of EA operators, EAs are not completely random

searches and are directed by the information carried by the population. Contrary to the

local search methods, where only one individual is attracted toward the Pareto front, here

the entire population contributes to the evolutionary process toward the Pareto front by

searching for many nondominated solutions at once. It is this characteristic that makes the

population based approach very attractive for solving MOPs, but it comes at a relatively

higher computational cost since many fitness evaluations are required (Ehrgott and

Gandibleux, 2000:16, Fonseca and Fleming, 1993:1).

 17

Recent research by Van Veldhuizen catalogued 206 multiobjective EAs (MOEAs)

(1999:A-1). A widespread implementation of the population-based approach is a type of

EA called the Genetic Algorithm (GA). Its broad applicability, ease of use, and success

in handling MOPs makes it “no surprise that a number of different multi-objective GA

implementations exist in the literature…” (Deb, 1998:4). A GA, in a single run, can

provide “a number of Pareto-optimal solutions” (Deb, 1998:26) and has the “ability to

find global optima while being able to cope with discontinuous and noisy functions”

(Fonseca and Fleming, 1993:7). A detailed discussion of GA theory, operation, and types

of MOEAs can be found in the next section.

The limit of any optimization method is succinctly expressed by the No Free

Lunch theorems (Wolpert and Macready, 1996), which tell us that “used blindly, there is

an equal chance that any optimization technique will perform the same” (Practical Guide,

no date). The choice of which optimization method to use should be based on what is

known about the system being optimized. Even though a GA has no guarantee of

performing better than another method in a given application, in most cases a GA’s

parameters and configuration can be tailored to achieve adequate search performance.

Genetic Algorithms

The Genetic Algorithm (GA) is based on the biological processes of evolution as

described by Charles Darwin (1936). An organism is made up of genetic material

embedded with environmental knowledge. Natural selection sees to it that those

individuals that are better suited to their environment survive to pass-on their good

genetic material. The less fortunate die and take their bad genes with them.

 18

Reproduction happens in an environment where the selection of who gets to mate is

largely a function of individual fitness. Reproducing pairs or parents, produce offspring

with chromosomes containing information from each parent. Evolution uses mutation to

stimulate diversity in the population. Mutated individuals do not always survive, but

occasionally there are those that are better suited to their environment and more

competitive than the others. Their environmental advantage is passed on to their

offspring and ultimately to future generations (Caryl, no date).

Basic Operation. There are five characteristic components in every GA (Caryl):

1. A way to create an initial population of potential solutions

2. A genetic representation for solutions to the problem

3. An evaluation function that plays the role of the environment,

rating solutions in terms of their fitness

4. Genetic operators that alter the composition of children during

reproduction

5. Values for various parameters that the genetic algorithm uses

(population size, probability of applying genetic operators)

The pseudo code for the basic algorithm is presented in Figure 3:

Start GA
 // start with an initial time
 t = 0;
 // initialize random population of individuals
 initialize P(t);
 // evaluate fitness of all initial individuals of population
 evaluate P(t);
 // test for termination criterion
 while not done do
 // increment the time counter
 t = t + 1;
 // select a sub-population for offspring production
 P′(t) = parents from P(t);

 19

 // recombine the "genes" of selected parents
 recombine P′(t);
 // perturb the mated population stochastically
 mutate P′(t);
 // evaluate its new fitness
 evaluate P′(t);
 // select the survivors based on fitness
 P(t) = survive P(t), P′(t);

end do
 end GA.

Figure 3. Pseudo Code for a Simple Genetic Algorithm (Osyczka and Kundu, 1995:95)

A single iteration of the while loop constitutes a generation.

Initialization. A GA maintains a population of solutions, all of which are

potential parents. The first generation’s population is initialized, usually with randomly

generated individuals. Another technique is to initialize the population with high-quality

solutions. This approach has shown to increase the speed of convergence, but with an

increased possibility of premature convergence to only a portion of the Pareto front

(Reeves, 1995:164).

Representation. A GA can be thought of as a “DNA simulator” where

nonbiological structures could be modeled in terms of bit strings that could be changed

through transformations analogous to evolution. In the traditional GA, a genotypic

representation scheme encodes n decision variables into n sequences of binary bits that

together form a bit string or chromosome that represents an individual solution in

decision space. The values of the variables are termed alleles and the location of a bit

within the string is its locus (Reeves, 1995:138).

Genotype is the genetic phrase for the encoded variables while phenotype is used

for decoded variable representation. This encoding scheme leads naturally to

 20

representation of integer decision variables. For example, equation (2.6) is an objective

function in two variables:

 max: 2 2(,)f x y x y= + (2.6)

Each variable can be represented by bit string of length m. If the phenotypic

representations for x and y are 3 and 6 respectively (i.e. x = 3 and y = 6 and m = 4, then

(2.7) is the 8-bit string genotypic representation of x and y:

 0 0 1 1 0 1 1 0 (2.7)

As this also represents an entire solution to equation (2.6), the bit string is itself a

chromosome.

Continuous variables are approximated through a scaling function. The accuracy

with which an optimum solution can be resolved depends on the length of the bit string.

For instance, a variable represented by a 22 bit chromosome can range between 0 and

222 1− . When rescaled into real numbers with a range of 3, this representation gives

quantization errors of 7.2 x 10-7. The scaling operation also serves to designate the upper

and lower bounds of the decision variable (Osyczka and Kundu, 1995: 95).

Other encoding methods that have been used are real number representation and

an integer representation variation. In real number representation, the each decision

variable is simply represented by floating point number, resulting in a “one gene / one

variable relationship” (Practical Guide, no date). Using an integer instead of a floating-

point number results in an integer representation. The disadvantage in using a binary

representation is a result of the extra steps needed to decode the binary string to a

floating-point number and back for each fitness evaluation (Practical Guide, no date).

However, contrary to real number representation, the theoretic aspects of binary

 21

representation have been thoroughly explored, placing performance evaluation of the GA

on much more solid ground (Practical Guide, no date).

Fitness Evaluation. Since the goal of optimization is to either maximize or

minimize the objective function value, a measure of solution fitness is a function of the

objective function value. If the objective function in equation (2.6) is used as a direct

measure of solution fitness, then the chromosome in equation (2.7) can be decomposed

into x and y values and substituted into the objective function:

 2 2(3,6) 3 6 45f = + =

If maximizing, the solution (3, 6) would yield a better fitness than solutions with lesser

values.

Once a population has been produced, it can be evaluated using an objective

function that characterizes every individual’s performance in the problem domain. The

number of fitness evaluations increases with the number of objective functions and

population size. Fitness evaluation is the primary source of GA computational cost.

Genetic Operators. Traditional genetic operators are selection, recombination,

mutation, and evaluation. Selection for reproduction is dependent on the evaluated

fitness of each solution, the idea being that better solutions have better representation in

the population in order to improve the population with respect to preceding generations.

Selected solutions are recombined to form new solutions that are then evaluated for

inclusion in the next generation’s population. Prior to evaluation, a solution may be

changed by probabilistically applying a mutation operation to one or more of its genes.

Selection. Solution fitness is used to bias the selection process toward

highly fit individuals while still allowing less fit individuals to reproduce. This has the

 22

effect of keeping a measure of diversity in the population thereby making the search more

global. Highly fit individuals are given a higher probability of being selected for

reproduction than individuals with a lower fitness value. The average performance of

individuals can be expected to increase since those individuals with better fitnesses are

more likely to be selected for reproduction and the lower fitness individuals are

eventually culled from the population. Individuals may be selected more than once at

each iteration of the GA.

 There are a variety of selection schemes employed in GAs (Osyczka and Kundu,

1995:95, Deb, 1999a:7). Common methods include proportionate selection, ranking

selection, and tournament selection. In proportionate selection, the probability that an

individual is chosen for selection is the individual’s fitness divided by the sum of the

current population’s fitnesses:

1

()()
()

select n

j

fitness ip i
fitness j

=

=
∑

 (2.8)

where i is the individual in question and n is the population size. The new population of

potential parents is then selected by making n random draws from a uniform distribution

(Dorigo and Maniezzo, 1993:7).

In ranking selection, the population is sorted from best to worst in terms of

fitness. The number of copies that an individual should receive is given by an assignment

function, and is proportional to the rank of an individual rather than its absolute fitness

value.

In tournament selection, successive groups of k of individuals are chosen from the

population and compared. The best individual from each group is selected as a parent for

 23

the next generation. This process is repeated until the mating pool is filled. When k = 2,

each solution will compete twice. The best solutions will have two copies in the new

population, the worst are eliminated, and those in between have one. Deb reports that

“tournament selection has better convergence and computational time complexity

properties compared to any other reproduction operator that exist in the literature, when

used in isolation” (1999a:7).

Recombination. The recombination operation is typically referred to as a

crossover. After selection, each individual has a probability pc, called the crossover rate,

of being chosen for crossover. This probability is usually set high, between 0.5 and 0.9.

Randomly chosen pairs of individuals are combined to produce two offspring. Crossover

can be applied in different ways. Two of the most often used crossover operators are

single point and multi-point crossover.

In single point crossover, a common point between two genes in both parents is

selected at random. The number of points is simply the length of the chromosome, l,

minus one. The offspring are created by concatenating the pre-selection point genes from

one parent with the post-selection genes from the other parent. For example, if the

randomly selected crossover point is between the third and fourth genes of the

chromosome, as in Figure 4, parents P1 and P2 produce the offspring O1 and O2

(Reeves, 1995: 154).

P1 1 0 1 0 0 1 0 O1 1 0 1 1 0 0 1
 ↑

P2 0 1 1 1 0 0 1 O2 0 1 1 0 0 1 0
 ↑

Figure 4. Example of Single-point Crossover

 24

 In multi-point crossover, up to n – 1 points may be selected a crossover points, n

being the population size. The parents can then swap every other segment. In uniform

crossover, each gene position is considered for crossover. However, this method has a

high probability of producing offspring that are considerably different from their parents

and so pc is usually set low, e.g. 0.01 (Practical Guide, no date).

In practice, “the simple crossover operator has proved extremely effective”

(Reeves, 1995:170). It does no backtracking or table lookups, making it a simple and

efficient method to implement.

Mutation. Crossover is responsible for the search aspect of the GA and is

considered the primary operator. Mutation is responsible for keeping a measure of

diversity in the search and is considered as a background operator. The offspring from

reproduction are further perturbed by mutation. Each bit in a chromosome is changed

with given probability pm, called the mutation rate. In a binary representation scheme,

this means flipping the bit.

The mutation operator is both simple and powerful by guaranteeing “that every

point in the search space can be reached” (Dorigo and Maniezzo, 1993:7). It works by

biasing the creation of new solution in the neighborhood of the original solution (Deb,

1999a:10). Overuse of the mutation operator would destroy this relationship and so it is

used sparingly, with pm usually set to between 0.1 and 0.001. Both the Messy GA (mGA)

and Multiobjective Messy GA (MOMGA) set pm to 0 and have obtained highly

competitive results in comparison with other GA implementations (Van Veldhuizen,

1999).

 25

 At this point, the next generation’s population must be filled. The process

described by Osyczka and Kundu in Figure 3 is only one example of how this may be

accomplished. Following along, the new individuals that result from crossover and

mutation are evaluated for fitness and compared with the parent population. The next

generation is made up of the individuals from both generations with the highest fitnesses.

Deb implements a variation on filling the next generation by using the n(pc) offspring and

n(1 – pc) parents (Deb, 1999a:9). This method is expected to produce better solutions

since the higher fitness parents that are the result of the selection process are used to fill

the vacancies left by the crossover operator in the new population. The n(1 – pc) parents

can be copied either deterministically or at random.

These processes of selection, recombination, mutation, and evaluation are then

repeated until some termination criteria is satisfied, e.g. upon reaching a maximum

number of generations, a specified fitness, a specified number of solutions in the

nondominated solution set, or after an elapsed period of time. Another stopping rule used

is based on the number of fitness function evaluations performed. The number of

function evaluations required to find the optimal solution set, within a given tolerance of

course, is an important measure of algorithm efficiency (Van Veldhuizen and Lamont,

2000(a):141). This is discussed in the section on multiobjective GAs.

Parameter Settings. The parameters most often cited as having a significant

affect on the performance of an EA are population size (n), crossover rate (pc), and

mutation rate (pm) (Gray, 1997, Caryl, no date, Practical Guide, no date). Despite the

many papers on the theoretical and applied use of EAs, there are very few quantitative

methods for determining the proper values to use in a given optimization problem

 26

(Practical Guide, no date). The parameter values that produce the most efficient and

effective results depend upon the given problem and how the EA is applied, i.e. search

space topology, representation scheme, selection and recombination methods. The

parameters may even vary with each generation or between decision variables

(Mathematical Optimization, no date).

Researchers have used parametric studies to determine the best settings for a

particular problem (Deb and Agrawal, 1999:3, Practical Guide, no date). Ad hoc

parameter settings are based on what is generally known about how their interaction

affects a GA’s performance, i.e., algorithmic efficiency and the exploration and

exploitation of the search space. For GAs, the most time-consuming task is fitness

evaluation (Van Veldhuizen and Lamont, 2000(a):142). GA complexity and efficiency

are generally stated in terms of the number of fitness evaluations performed. Search

space exploration refers to how well population diversity is maintained in the

nondominated front. Search space exploitation refers to how well the search is guided

towards the true Pareto front (Deb, 1998:4). The parameter settings used depend on what

aspect of GA performance the researcher is focused on (Deb and Agrawal, 1999:2-3).

Swinging a parameter’s settings through a predetermined minimum and maximum can

give some picture of Pareto front. In consideration of the interaction between parameter

settings, the number of runs needed to do this is itself a multiobjective problem and is

NP-complete (Zydallis, 2001).

It can be seen intuitively that the setting of the population size is a trade-off

between solution diversity and algorithmic efficiency. As n increases, the diversity of

among individuals is expected to increase, thereby decreasing the chance of premature

 27

convergence to suboptimal solutions or only a portion of the Pareto front. This does not

imply that increasing the population size automatically improves convergence to the

Pareto front (Zitzler et al.. 1999:18). Increasing the population size does have a

computation cost. For a k objective optimization problem, at least kn fitness evaluations

are required. Suggested values for n are between 25 and 100 (Practical Guide, no date).

Deb and Agrawal have shown that for simple functions, GAs using both crossover

and mutation perform better than either of them alone, and suggest the use of a large

crossover probability with a small mutation probability (1999:20). With more difficult

problems, the use of crossover exclusively (along with a suitable population size) was

shown to be effective (Deb and Agrawal, 1999:20). This is not surprising since crossover

is the key search operator and implicitly manipulates the best substrings or building

blocks to create Pareto optimal solutions (this is discussed further in the section on the

Schema Theorem). This does not imply that mutation is unimportant. Mutation is used

to uncover building blocks from which the crossover operator may direct the search away

(premature convergence). Too large a rate may destroy the information carried by

building blocks. Depending on how much pressure the researcher wants to apply to

Pareto front distribution, suggested rates for mutation range between 0.001 and 0.1

(Practical Guide, no date). De Jong’s work with GAs on problems with discontinuities,

high dimensionality, noise, and multimodality suggests that settings of n = 50, pc = 0.60,

and pm = 0.001 would give adequate results in most cases (Mathematical Optimization,

no date). A commonly held opinion regarding parameter settings is that “although there

is no unique combination guaranteeing good performance, choosing wisely may well

result in more effective and efficient implementations” (Van Veldhuizen, 1999:2-18).

 28

Quantitative methods for determining the population size have been derived in the

literature but Deb and Agrawal have recognized that what is needed is a “good yet ready-

to-use population sizing estimate for generic problems” (1999:21). For crossover based

GAs, Goldberg, Deb, and Clark derive an estimate for the minimum population size, Ns,

needed to trigger correct building block processing (Deb and Agrawal, 1999:11-12):

2

22 M
sN c

d
σκ= (2.9)

where c is the tail of the Gaussian distribution relating to the permissible error rate α, κ,

is the number of competing schemata, and 2 2/M dσ is the inverse of the signal-to-noise in

the underlying problem.

Both De Jong and Hessner and Manner suggest quantitative methods for

determining the mutation rate, suggesting that the rate is inversely proportional to the

population size. The Hessner and Manner formulation is

 1
mp

n l
= (2.10)

where n is the population size and l is the length of the chromosome (Practical Guide, no

date).

The Schema Theorem. Chromosomal representation allows the manipulation of

information about the search space and the transfer of that information to other

chromosomes. This information is carried in the substrings of the chromosome. Thus,

each substring represents a subspace solution (Osyczka and Kundu, 1995:95). Substrings

are grouped based on similarity at certain string positions, called schema, and are

represented on a template of 0’s, 1’s, and *’s (in a binary representation) (Dorigo and

 29

Maniezzo, 1993:8). The “*” is a wildcard symbol that represents both 0 and 1. Thus a

schema S1 = (1 0 * *) represents stings with a 1 in the first position and a 0 in the second

position.

The length of a schema, δ(S), is defined as the distance between the two most

distant symbols in the schema that are not wildcards. The order of a schema, o(S), is

defined as the number of wildcards subtracted from the number of symbols in the schema

(Dorigo and Maniezzo, 1993:8). So δ(S1) is 2 – 1 = 1 and o(S1) is 4 – 2 = 2. The fitness

of a schema is the average fitness of all strings that match the schema (Osyczka and

Kundu, 1995:95).

Since a schema is a grouping of similar strings, it represents a region in the search

space. For the objective function in equation (2.6), the schema S1 represents strings with

x and y values varying from 8 to 11 with function values varying from 128 to 242. A

schema S2 = (0 0 * *) would result in function values varying from 0 to 18. Since the

objective is to maximize, strings similar to S1 are preferred and increase in proportion

over those like S2. This is given by Holland’s Schema Theorem, which formalizes the

expected number m of schemata h within a population at generation t:

 () ()(, 1) (,) 1 ()
1c m

f h hm h t m h t p p o h
f l

δ + ≥ − − −
 (2.11)

where f(h) is the average fitness of all strings similar to h within the population, f is the

average fitness of the population, and the rest as defined previously (Goldberg, et al.,

1989:5). It can be seen from equation (2.11) that short, low-order, above-average fitness

schemata, or building blocks, are desirable if a schema is to grow in subsequent

generations. Building blocks, according to Goldberg, “will increase in number with

 30

exponential speed” (Dorigo and Maniezzo, 1993:9-10). That a GA accomplishes this

implicitly through the selective pressure fostered by representation schemes and genetic

operators is postulated by Goldberg in what is known as the Building Block Hypothesis

(Deb, 1999a:14, Van Veldhuizen, 1999:4-3).

Constraint Handling. Most real world problems are going to be constrained in

some way (time, money, space, bandwidth, etc.). In constrained problems, complexities

arise in GAs due to how the genetic operators direct the search. It is very likely that a

small change to a feasible solution will lead to an infeasible one. (Ruiz-Andino, et al.,

2000:353).

One approach to dealing with constraints is to modify the solution representation

itself so as not to allow the creation of infeasible solutions. Repair algorithms or

decoders are special operators that avoid the construction of illegal solutions. They may

work reasonably well but are highly problem specific and may be computationally

intensive to run. Additionally, they may work against the inherent search properties of the

GA and may be difficult to implement (Ruiz-Andino, et al., 2000:353).

Penalty functions that reduce the fitness of infeasible solutions are more popular

(Kundu, 1995:96, Deb, 1999a:14) but also problem specific. Penalty functions may be

linear, quadratic, logarithmic, etc. functions of the deviation of the constraints and/or the

number of violated constraints. Although successfully used by many researchers, the

performance of GAs will depend upon the choice of constraint parameter values used.

To prevent the emphasis of a particular constraint and thereby restrict the search,

different penalty parameters should be used with different objective functions (Deb,

 31

1998:7, Gray, et al., 1997). Deb describes a parameterless penalty function that is used

with a size-2 tournament selection operator (Deb, 1999a:15):

Given a single objective function, f(x), and the maximization inequality

 () 0, 1,2, ,jg x j J≥ = … (2.12)

the fitness, F(x), of any solution is defined as follows:

max

1

(), if () 0, ,
()

(), otherwise

j

J

j
j

f x g x j J
F x

f g x
=

≥ ∀ ∈
 = +

∑
 (2.13)

where fmax is the maximum function value of all feasible solutions in the

population.

 In a tournament between an infeasible solution and feasible solution, it can be

seen from equation (2.13) that the feasible solution always has a better fitness than the

infeasible ones. If both solutions are feasible, their assessment is based on their

respective objective function values. If both solutions are infeasible, then the assessment

is made based on the amount of the constraint violations. No penalty parameter need be

used since pairwise comparison of the infeasible solutions does not depend on their exact

fitness values (Deb, 1999a:15).

Multiobjective GAs. The basic operation of the single objective GA in Figure 3

must be enhanced to evaluate solutions with multiple fitnesses (objectives). Researchers

have responded with a number of ways to judge the overall fitness of the solutions. Van

Veldhuizen’s recent research served to classify known multiobjective EAs on the basis of

 32

the role of the decision maker in the process (1999:A-1). In a priori techniques, the

decision maker makes his or her preferences known at the beginning of the process,

resulting in a single compromise solution, e.g. lexicographic (ordering), linear and non-

linear combination, or goal programming.

In a posteriori, the Pareto optimal set is generated for the decision maker who

then makes his or her preferences known by selecting a solution from the set. This

technique is notable in that the resultant solution set is independent of the decision

maker’s preference and, assuming no change in the problem environment, new solution

sets would not need to be generated for different decision makers.

Progressive techniques allow the decision maker to interact and provide

preference information during the process. These techniques require a high degree of

participation from the decision maker and generally make use of both a priori and a

posteriori techniques.

A large number of methods for judging overall fitness use an objective-

aggregation approach and fall in the category of a priori techniques. The different fitness

values are weighted and summed according to the decision maker’s preference for them.

However, this is very subjective and is difficult to do accurately, especially when the

interplay between non-commensurate objectives is not well understood (Chipperfield, et

al., 2000, Shaw, 1998). The search space is inextricably linked to the weightings, thus a

single inaccurate weight may cause a GA converge to an undesirable front.

 The predominant approach to solving MOEAs is to use the concept of Pareto

dominance, as defined in Appendix A, in the selection operator (Deb, 1999:4). Van

Veldhuizen notes that “the sheer number of Pareto sampling approaches indicates many

 33

researchers see merit in the basic methodology” (1999:3-10). Pareto dominance allows

all nondominated solutions to have the same preference, resulting in a set of

nondominated solutions for which the population-based EA is particularly well suited to

handle. Pareto dominance approaches produce as their end product nondominated sets of

solutions and so are well suited for use in the a posteriori mode. The following

algorithms are among the most often cited and copied contemporary MOEAs that use

Pareto dominance:

Multiobjective GA (MOGA) (Fonseca and Fleming, 1993)
Niched Pareto GA (NPGA) (Horn, et al., 1993)
Non-dominated Sorting GA (NSGA) (Srinivas and Deb, 1995)
Strength Pareto EA (Zitzler and Thiele, 1998)
NSGA-II (Deb, et al., 2000)

In order to improve the explorative and exploitative properties of their respective

algorithms, researchers have used more complex selection operators, such as ranking,

sharing, niching, elitist, and domination tournaments (Zydallis, et al., 1999:2).

MOGA and NSGA use variations on Goldberg’s nondominated sorting procedure.

The basic operation of this procedure is to rank solutions in nondominated order with the

best solutions being the least dominated. These fittest solutions are given higher

probabilities of producing more offspring (Bentley and Wakefield, 1999:7). The MOGA

checks the population and assigns a rank of 1 to all nondominated solutions. Each of the

other solutions is ranked based on the number of solutions that dominate it (Deb,

1999b:5). Fitness is assigned based on linear or exponential interpolation (Van

Veldhuizen, 1999:3-22).

 34

NSGA also checks the population and assigns a rank of 1 to all nondominated

solutions, forming what it calls the first level of non-domination. The first level is

removed from consideration and proceeds on the rest of the population in the same way,

resulting in 1 to n domination levels, n being the population size. All first level solutions

receive a fitness equal to the population size. The other levels receive a dummy fitness

that is smaller than the smallest shared fitness of the preceding level.

Fitness sharing was suggested by Goldberg allow for solutions with identical

fitness along different parts of the front, thereby helping the population to be distributed

along the front (Horn, et al.,1993:4). The number of neighboring solutions along the

front, referred to as a niche, are used to selectively reduce the fitness of high niche count

solutions, thus increasing pressure toward a uniform Pareto front distribution (Horn, et

al., 1993:8). A sharing parameter, σshare, is a defined maximum distance within which

any solution constitutes as belonging to a neighborhood. Solutions within σshare of each

other reduce each others fitness.

To perform domination ranking, NPGA uses domination tournaments of size two

(Horn, et al., 1993: 6). The tournament procedure selects two solutions at random and

each of them competes against a comparison set of solutions, tdom, that are also selected at

random from the population. When one solution is dominated and the other is not, the

latter is selected. When competing solutions are either both dominated or both

nondominated, sharing determines the winner. NPGA implements sharing in a different

manner. Rather than reducing the fitness of high niche count solutions, the winner is

declared based on the solution with the smallest niche count (Horn, et al., 1993:9). While

 35

MOGA, NSGA, and NPGA all require explicit values for σshare, NPGA also requires the

same for tdom.

Elitist selection ensures that the best solutions are retained in the next generation

(Van Veldhuizen, 1999:A-25). SPEA uses an elitist selection with nondomination (Deb,

1999b:6). The algorithm maintains a secondary population that is the current Pareto

optimal set. This population is combined with the current population and nondominated

comparisons are performed on the whole. Nondominated solutions are assigned a fitness

based on the number of solutions they dominate. Preference is given to

1. nondominated solutions that dominate more solutions in the combined

population, and

2. dominated solutions that are dominated by more solutions in the combined

population.

The preference rules are meant to check premature convergence by preventing large

numbers of good solutions from being carried over from one generation to the next (Deb,

1998:26). However, rather than having equal preference for all nondominated solutions,

SPEA is biased in favor of nondominated solutions that dominate more solutions than

others (Van Veldhuizen, 1999:3-20).

 There is another approach that steps further away from the traditional GA: the

Messy GA (mGA). The mGA abandons fixed length bit strings and so-called neat

operator, crossover, in favor of variable-length based representations, and a gene

reordering operator called cut-n-splice. The pseudo code for Goldberg’s, et al. mGA is

presented in Figure 5.

 36

Start mGA
 // loop for user defined number of eras
 while not done do

// perform Phase 1: Partially Enumerative Initialization
// evaluate individual fitness for entire population
// start Phase 2: Primordial Phase

 // loop for user defined number of generations
 while not done do

 // increment the generation counter
 g = g + 1;
 // perform Tournament Thresholding Selection

// test for appropriate number of elapsed
generations, g*

 if g = = g*;
 reduce population size;
 // reset g
 g = 0;
 end if
 end do

// end Primordial Phase
// start Phase 3: Juxtapositional Phase
 // loop for specified number of generations

 while not done do
 // increment the generation counter
 t = t + 1;
 // perform cut-n-splice
 // evaluate individual fitness for entire population

// perform Tournament Thresholding Selection
 end do
 // end Juxtapositional Phase
 // update competitive template
 end do
 end mGA

Figure 5. Pseudo Code for a Messy Genetic Algorithm (Van Veldhuizen, 1999:4-5)

A GA has difficulty when the genes are not ordered properly. According to the

Schema Theorem, these longer length schemata have a higher probability of being

destroyed by crossover and mutation. This linkage problem leads to what is known as

deception, where poorly ordered schemata lead the GA away from the global optimum.

 37

This is illustrated in the following example by Goldberg, et al., (1989:508). Given that

(0 0 * * * *) and (* * * * 0 0) are highly fit schemata of an optimal point

(1 1 1 1 1 1 1), and that the schema (0 0 * * * 0 0) is much less fit than the building

block (1 1 * * * 1 1), the GA will, with high probability, destroy the longer length

building block and converge to a less than optimal point.

 Nature allows individuals to carry redundant information such as multiple copies

of genes and paired chromosomes. Messy genetic algorithms copy this by allowing

redundant or even contradictory genes (Goldberg, et al., 1989:501). To allow the

reordering of genes, each gene is a pair of integers that represents the name and value of

the gene, respectively. For example, in messy representation, two strings P1 and P2 are

 1 ((3,1) (1,0) (3,0) (2,1) (1,0))P = (2.14)
and
 2 ((4,1) (2,0) (3,0) (2,1))P = (2.15)

Both P1 and P2 are valid despite under-specification by P1 in bits four and five, and over-

specification by P1 in bit 3 and by P2 in bit 2.

 The traditional crossover operator is replaced by the cut-n-splice operator. The

name of this operator is indicative of what it does to bit strings. The position of cuts can

be chosen independently for both parents. After cutting, partial strings are spliced in a

random order. To illustrate, cut-n-splice is performed on P1 and P2 in Figure 6.

 O1 (3,1) (1,0) (2,1)
P1 (3,1) (1,0) (3,0) (2,1) (1,0)
 ↑ O2 (3,1) (1,0) (4,1) (2,0) (3,0)

 O3 (4,1) (2,0) (3,0) (3,0) (2,1) (1,0)
P2 (4,1) (2,0) (3,0) (2,1)
 ↑ O4 (2,1) (3,0) (2,1) (1,0)

Figure 6. Example of Cut-n-Splice Operation (Hoffman, 1997)

 38

Evaluation of variable lengths strings is problematic since under- and over-

specified strings must have their lengths changed to fit with the objective function.

Goldberg, et al., settled on a simple first-come, first-served process to handle over-

specification (1989:501). Since this method does not rely on bitwise fitness for its

choice, it is not biased to toward deceptive schemata. Goldberg, et al., successfully

handle under-specification through their use of competitive templates that fill in the

unspecified bits in an under-specified string (1989:521). A competitive template is

initialized randomly and used in the first era. Thereafter, the best solution in the current

era is used as the competitive template for the next era, and so on. A competitive

template that is itself a locally optimal solution to a problem “accentuates salient building

blocks” by ensuring that their fitness is better than that of the template (Goldberg et al.,

1990:417).

 An mGA proceeds in two phases. Prior to the first phase, the population is

initialized so that it completely enumerates building blocks of a given length. This

process is referred to by Goldberg, et al. as Partially Enumerative Initialization

(1990:505). The population sized is determined based on the highest order k deceptive

string expected in the problem:

 2k l
n

k

=

 (2.16)

where l is the length of the chromosome (Goldberg, et al., 1989:505).

In the primordial phase, tournament selection is performed on successive

populations “to create an enriched population of building blocks whose combination will

create optimal or very near optimal strings” (Goldberg, et al., 1989:505). To avoid an

 39

apples and oranges comparison of substrings that do not refer to the same subfunction,

the mGA only compares substrings that are similar to each other to an extent that is

defined by a threshold number of genes in common. The threshold parameter is defined

by Goldberg, et al., to be

 1 2l l
l

θ = (2.17)

where l is the chromosome length and l1 and l2 are the respective substring lengths

(1989:426). The number of substrings to check against θ is defined by a shuffle number,

nsh, equal to the chromosome length (Goldberg, et al., 1989:427).

As the primordial phase proceeds, the population size is reduced roughly in half

by selection at specified intervals since only the better building blocks need to be

maintained. This phase represents a key difference between a mGA, which explicitly and

directly manipulates building blocks, and other EAs which settle for implicitly

manipulating building blocks.

At the conclusion of the primordial phase, the juxtapositional phase proceeds as a

traditional GA would on a fixed population size, albeit using cut-n-splice instead of

crossover to lengthen the substrings. Thresholding is also used in the selection operator.

In essence, an mGA tries to gather information on building block relationships first, then

searches for better solutions (Kargupta, no date).

In his PhD dissertation, David Van Veldhuizen extended the mGA to handle

MOPs and developed the Multi-Objective Messy Genetic Algorithm (MOMGA) (1999).

There is a competitive template for each objective that is at first randomly initialized and

then updated with the previous era’s best individual for that objective (Zydallis, et al.,

 40

2001:4). Like Horn, et al., Van Veldhuizen augmented the tournament selection operator

with a niching strategy to increase domination pressure (1999:4-14). As with NPGA, the

MOMGA requires explicit values for σshare and tdom to control domination pressure. The

MOMGA uses Fonseca’s suggested method to determine σshare:

 1 1

()
k k

i share i
i i

k
share

N
σ

σ
= =

∆ + − ∆
=

∏ ∏
 (2.18)

where N is the number of individuals in the population, ∆i is the difference between the

maximum and minimum objective values in dimension i, and k is the number of distinct

MOP objectives (Van Veldhuizen, 1999:6-11).

The MOMGA also maintains and updates a list of known Pareto optimal solutions

Pknown with Pareto optimal solutions from current generation Pcurrent (Van Veldhuizen,

1999:4-17). Since dominance determination is at worst an n2 algorithm, n being the list

cardinality, it is done on Pknown at the termination of the program to prevent the MOMGA

by being bogged down.

As shown by equation (2.16), the initial population grows exponentially as the

building block size k is increased, creating a computational bottleneck, i.e. O(lk).

Zydallis, et al. reduce this bottleneck using a probabilistic approach to initialize the

population (2001:5). Probabilistically Complete Initialization (PCI) creates a controlled

number of building blocks of size k. Building Block Filtering (BBF), which replaces the

Primordial phase, alternately reduces string lengths by randomly deleting bits from the

strings and performs selection on the strings. This continues according to a user specified

schedule of alternations until the strings are of length k. The Juxtapositional phase

 41

proceeds as before. This approach probabilistically ensures that all of the best building

blocks are in the initial population and results in initial population growth on order of the

initial string length—O(l) (Goldberg, et al., 1993:7).

Using these ideas, Zydallis, et al. modified original MOMGA, creating a

multiobjective fast messy GA (MOMGA-II). Their research shows the MOMGA-II to be

more efficient than the MOMGA while reutilizing much of the same code. The

MOMGA-II was also applied to the same test suite as the original MOMGA, achieving

similar results but with fewer juxtapositional generations (2001:10).

Summary

To answer the first research question, we began by defining what a multiple

objective programming problem is, what it means to be globally optimal, the concept of

Pareto dominance, and introduced classical approaches to solving MOPs. We then

presented modern methods for solving MOPs in terms of two approaches: local search in

objective space and population-based.

The next chapter answers the second and third research questions by presenting a

multiobjective model formulation and solution methodology for the research problem.

 42

III. Methodology

Introduction

 The previous chapter was directed at the first research question, which asks for a

review of MOP methodologies. The intent of this chapter is to answer the second and

third research questions:

• What are the forms of the decision and objective spaces?

• How is the selected MOP methodology evaluated?

 This chapter also defines the experimental methodology that is used to answer the fourth

question: evaluate the MOP approach used to solve the research problem.

This chapter begins with the research problem model formulation that is based on

the ALP Pilot Problem (Swartz, 1999). The next section presents the MOP formulation

and describes the construction of the research problem’s decision variables, objective

functions, and constraints. This is followed by a description of the target MOP used in

the model. Next, the motivation for selection of a specific MOP methodology and

objectives for its evaluation are discussed. The last two sections present evaluation

metrics and the solution methodology used for this research.

Model Formulation

This research problem is modeled on the ALP Pilot Problem presented by Stephen

Swartz (1999). The reader is referred to Appendix B for the background information

used to construct the model.

 43

The MOP Processing Model is depicted in Figure 7. The centerpiece of the

model is the MOP Tool. The MOP Tool is to be an application of a MOP solution

methodology selected from the literature. The inputs to the MOP tool allow for the MOP

formulation discussed in the next section.

Figure 7. MOP Processing Model

The output requirement of the model is to present to the war planner a Pareto

optimal set of force mixes from which to select the desired force mix. Using some

decision making methodology, the planner can choose the desired Mission Ready

Resource (MRR) set from each Pareto optimal set associated with an inflection point on

the task preference vector (as shown in Figure 12 of Appendix B). This piecewise

solution represents the decision maker’s preferred MRR sets for a given combat

capability.

Campaign Specific Processing
&

Selection of Progressive
Force Mixes

Acceptable Force
Mixes at each

Resource Level

MOP
TOOL

Specified Resource Levels

Task Preferences

Pool of MRR Types

MRR Task Suitability Matrix

MRR Weight Cost Matrix

MRR Volume Cost Matrix

 44

 These assumptions imply that a solution set produced at a given resource level is

a subset of solution sets at greater resource levels. This must be reflected in the

piecewise solution and is accomplished by proceeding along the preference vector from

the origin to the last resource level or vice versa. This is illustrated by the three force mix

sets in Figure 8. For purposes of illustration, each set is considered nondominated. There

are nine possible force mix threads that progress from the lowest to highest specified

resource levels: {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5},

{1, 4, 6}, and {1, 4, 7}. However, it is seen by inspection that only three of these meet

the subset criteria: {1, 2, 7}, {1, 3, 6}, and {1, 3, 7}.

Figure 8. Thread of Progression

It is tempting to handle this requirement using a series of constraints. To

illustrate, we select a progression direction that begins with Resource Level 12. We then

1116

FBFA

1314
FBFA

215
FBFA

Resource Level = 27

“Thread of Progression”

4713

FBFA

3015

FBFA

3030

FBFA

Resource Level = 60

66

FBFA

Resource Level = 12
Force Mix 1

Force Mix 2 Force Mix 3 Force Mix 4

Force Mix 5 Force Mix 6 Force Mix 7

 45

choose the upper bound for each MRR type at that resource level to be the starting point,

or lower bound, for the next resource level. This leaves {1, 2} and {1, 3} as feasible

threads. Now the upper bound for each MRR type at this level is the starting point for the

next level. This leaves only {1, 2, 7} and {1, 3, 7}. Although {1, 3, 6} meets the subset

requirement, it is deemed infeasible. Using the lower bound as the starting point for the

next level allows the infeasible threads {1, 2, 5} and {1, 2, 6}. The same kind of problem

exists when starting from the highest resource level and progressing downward.

It is my opinion that the best way to handle the construction of force mix threads

is through a post-processing algorithm. The algorithm operates on level-wise

nondominated sets of force mixes and, starting at the lowest (or highest) resource level,

constructs threads iteratively, taking into consideration all possible feasible threads. Due

to time constraints, construction of this algorithm will not be undertaken in this research.

MOP Formulation

 Given m tasks and n MRR types, the solution set is an m x n matrix. A matrix

element is a decision variable, xi,j, that represents the number of MRRs of type j allocated

to tasks of type i. Assuming that each daily task is satisfied by exactly one MRR, and

that no interactions exist between differing MRR types, then the suitability, S, for all

MRRs is defined by

 , ,
1 1

n m

i j i j
j i

S xα
= =

=∑ ∑ (3.1)

where αi,j is the suitability of MRR j for Task i and xi,j is the number of MRRs j allocated

to task type i.

 46

 The requirement that all tasks i = 1, …, n must be satisfied at a particular resource

level (RL) k is:

 , ,
1

n

k i i j
j

RLtask x
=

=∑ (3.2)

Since the desired capability for a task is set by the decision maker and defined to be

static, the left-hand side of equation (3.2) is an equality constraint.

 The requirement that all MRR types j = 1,…,n do not exceed their available

number at a particular resource level k is

 , , ,
1

m

j k i j k
i

RLmrr x
=

≥∑ (3.3)

In this problem, the decision variables are allowed to take on any non-negative integer

value so long as they do not exceed the specified resource level. Therefore, the left-

hand side of equation (3.3) is an inequality constraint.

 The maximum number of sorties per day for a particular asset, A, is given by its

turn rate, t. For a quantity d of asset A, the total turn rate is

 ()()A A ATTR d turn rate= (3.4)

Given that A has P configurations corresponding to P MRR types, the upper bound for

any combination of the P MRR types is

 ,
1 1

r

P m

A i p
r i

TTR x
= =

≥∑∑ (3.5)

For example, let the number of tasks be one, and let P = {1, 3, 4} be the set of MRR

types that correspond to asset A. If the number of A is one and the turn rate of A is two,

then following decision variable values are possible:

 47

x1,1 x1,3 x1,4

1 1 0
1 0 1
0 1 1
2 0 0
0 2 0
0 0 2
1 0 0
0 1 0
0 0 1
0 0 0

Mathematically, this table is represented as

3 1

,
1 1

1,1 1,3 1,4 2

ri p A
r i

x TTR

x x x
= =

≤

+ + ≤

∑∑

It is difficult to determine what the actual logistical footprint is for a given asset

set. At the very least, it is clear that for each additional asset deployed, there is a

corresponding increase in lift cost for additional resources, e.g. fuel, munitions, etc.

Research conducted by Matt Goddard suggests that, for F-16s, the relationship of asset

quantity to lift resource consumption is linear (2001). Assuming that lift consumption is

linear and without interaction, the weight consumption, W, and volume consumption, V,

for all MRRs are

 ,
1 1

n m

j i j
j i

W xβ
= =

=∑ ∑ (3.6)

and

 ,
1 1

n m

j i j
j i

V xλ
= =

=∑ ∑ (3.7)

 48

where βj and λj are the weight and volume consumed by a single MRR j.

 The form of the suitability maximizing / lift minimizing MOP with A asset types,

m tasks, n MRR types, at a resource level k, and decision variables { x1,1, xi,j, … , xm,n } is

 maximize:

 , ,
1 1

n m

i j i j
j i

S xα
= =

=∑ ∑

 minimize:

 ,
1 1

n m

j i j
j i

W xβ
= =

=∑ ∑

 ,
1 1

n m

j i j
j i

V xλ
= =

=∑ ∑

 subject to

 , ,
1

for 1 to
n

i j k i
j

x RLtask i m
=

= =∑ (3.8)

 , ,
1

for 1 to
m

i j k j
i

x RLmrr j n
=

≤ =∑ (3.9)

 ,
1 1

a

r

P m

i p a
r i

x TTR
= =

≤∑∑ for a = 1 to A, and (3.10)

 Pa = number MRR types for a

{ x1,1, xi,j, … , xm,n } are non-negative integers

The number of constraints resulting from equation (3.8) is equal to the number of

tasks. These constraints ensure that the total number of sorties for Task i is exactly the

desired capability at that resource level. The maximum value for any decision variable is

found by using equation (3.8) and allocating all task capability to one MRR type. This

 49

information is important to the MOP programmer who must allocate computer memory

to hold the value for each decision variable.

The number of constraints resulting from equation (3.9) is equal to the number of

MRR types. These constraints ensure that no MRR type can be allocated a number of

sorties that exceeds the given resource level. These constraints are also used when there

are restrictions on the available number of any MRR type, e.g. attrition or changes in

asset turn rate. It is important to note that each constraint refers to a single MRR type.

Target MOP

The MOP Tool inputs in Tables 2 through 5 provide linkage between this thesis

and concurrent ALP research, and create a search space large enough to serve as a

reasonable test of the MOP Tool’s utility to the problem. The inputs are completely

notional but not entirely arbitrary.

The number of tasks in Table 1 and MRR types in Table 5, along with their task

suitabilities, are set to provide proper input to concurrent research (Filcek, 2001). The

suitabilities reflect notional but reasonable values that clearly differentiate the MRR

types. The same can be said for the lift consumption values in Table 5.

To keep the number of task capability decisions by the decision maker at a

reasonable level, five resource levels in Table 2 were specified, equating to 15 separate

task preference decisions. These preferences are reflected in Table 3. When the ratios

are applied to their respective resource level values, the result is the capability matrix in

Table 4. The values are rounded to a whole number so that the sum across tasks is equal

to the resource level.

 50

The values of the resource levels were chosen to create solution spaces of

increasing size. Given three tasks and five MRR types and a resource level of 300 sorties

per day, the worst case number of possible force mixes is approximately 9.72 x 1019 (by

equation (B.2)).

For the target MOP, it is assumed that there is no restriction on the available

number of any MRR type; the combined lift will not exceed the maximum available lift;

no attrition; and that each asset has one associated MRR type, i.e. one sortie per day.

These simplifying assumptions are made to meet research time constraints, but also allow

this groundbreaking research an opportunity to explore the basic problem complexity.

Table 1. Tasks

INDEX NOMENCLATURE
1 Air-to-Air (AA)
2 Air-to-Ground (AG)
3 Precision Bombing (PB)

Table 2. Resource Levels (RLs)

INDEX RL (sorties per day)
1 16
2 32
3 75
4 150
5 300

 51

Table 3. Desired Task Capability Ratios

 PERCENT TO TASK
INDEX AA AG PB

1 60 30 10
2 30 60 10
3 25 60 15
4 20 50 30
5 20 30 50

Table 4. Desired Capability Matrix

 TASK (sorties per day)

INDEX AA AG PB DECISION SPACE
CARDINALITY

1 10 5 1 630,630
2 10 20 2 159,549,390
3 19 45 11 ≈ 2.56 x 1012

4 30 75 45 ≈ 1.48 x 1016

5 60 90 150 ≈ 4.37 x 1019

Table 5. Task Suitability / Lift Consumption Matrix

TASK SUITABILITY LIFT CONSUMPTION
INDEX MRR

Type AA AG PB
WEIGHT

(short
tons)

VOLUME
(cubic
feet)

1 FA 0.800 0.400 0.001 20.2 1650.0
2 FB 0.300 0.800 0.001 28.5 2475.0
3 FC 0.600 0.600 0.100 35.7 2887.5
4 B1 0.001 0.001 0.800 19.9 1705.0
5 B2 0.001 0.001 0.400 22.5 2200.0

 52

The complete MOP formulation is as follows:

Decision variables: Number of MRR j assigned to Task i = {x1,1 … xi,j}

Maximize:

 1,1 1,2 1,3 1,4 1,5 2,1 2,2 2,3

2,4 2,5 3,1 3,2 3,3 3,4 3,5

0.8 0.3 0.6 0.001 0.001 0.4 0.8 0.6
0.001 0.001 0.001 0.001 0.1 0.8 0.4

S x x x x x x x x
x x x x x x x

= + + + + + + +
+ + + + + + +

 (3.11)

Minimize:

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

1,4 2,4 3,4 1,5 2,5 3,5

20.2() 28.5() 35.7()
19.9() 22.5()

W x x x x x x x x x
x x x x x x

+= + + + + + + +
+ + + + + +

 (3.12)

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

1,4 2,4 3,4 1,5 2,5 3,5

1650() 2475() 2887.5()
1705() 2200()

V x x x x x x x x x
x x x x x x

= + + + + + + + +
+ + + + + +

(3.13)

Subject to:
 1,1 3,5, , 0x x ≥… (3.14)

 1,1 3,5{ , , }x x I∈… (3.15)

 1,1 1,2 1,3 1,4 1,5 ,1mx x x x x RLtask+ + + + = (3.16)

 2,1 2,2 2,3 2,4 2,5 ,2mx x x x x RLtask+ + + + = (3.17)

 3,1 3,2 3,3 3,4 3,5 ,3mx x x x x RLtask+ + + + = (3.18)

 1,1 2,1 3,1 ,1mx x x RLmrr+ + ≤ (3.19)

 1,2 2,2 3,2 ,2mx x x RLmrr+ + ≤ (3.20)

 1,3 2,3 3,3 ,3mx x x RLmrr+ + ≤ (3.21)

 1,4 2,4 3,4 ,4mx x x RLmrr+ + ≤ (3.22)

 1,5 2,5 3,5 ,5mx x x RLmrr+ + ≤ (3.23)

where m is the Resource Level index for the current problem.

 53

Motivation and Objectives

The aim of this research is to select and evaluate a MOP tool that outputs to a

post-processor an acceptable series of resource level constrained force mixes in a

reasonable amount of time, and is scalable to more realistic problem sizes. In their basic

forms, simulated annealing and genetic algorithms are easy to understand and implement.

Both methods can show convergence, albeit slowly, when good solutions now are better

than great solutions later.

While many candidate approaches exist in the literature, an evolutionary-based

approach is ideally suited to the search for nondominated sets of solutions, particularly

for multidimensional problem domains and large search spaces. The balance between

exploration pressure and exploitation pressure can be controlled nearly independently in

GA, allowing flexibility in design (Deb, 1999a:11). In addition, GA populations and

operators can be parallelized, allowing scaling to large problems by using multiple

processors to reduce overall computational time.

The choice to design an MOEA for the problem domain or to modify an existing

MOEA to incorporate problem domain knowledge is a practical one. All methods rely

heavily on computing skills for implementation, and the time allotted for this research is

limited. While a simple GA can be designed for the problem at hand, clever

enhancements are needed to increase the efficiency and effectiveness of the algorithm an

make it truly useful. The contemporary MOEAs cited in the literature review are well

designed, based on modern MOEA theory, and have found use in many applications (Van

Veldhuizen, 1999). Van Veldhuizen identified quantitative metrics to objectively

compare four such MOEAs in terms of their efficiency and effectiveness: MOGA,

 54

NSGA, NPGA, and MOMGA. The reader is referred to Chapter II for an overview of

these MOEAs. Using a carefully designed test suite of MOPs that emphasized certain

genotypical and phenotypical characteristics from throughout the MOP domain (concave,

convex, connected, non-connected, scalable, uniformity, and non-uniformity), he

concluded that the MOMGA compared favorably with the other MOEAs and surpassed

the effectiveness of several of them (1999: 5-5, 5-7, 7-23, Zydallis, et al., 2001:1,14).

These results validated the use of explicit building block MOEAs in the MOP domain. A

similar experiment by Zydallis, et al., pitted the MOMGA-II against the same MOEAs

and concluded that the MOMGA-II achieves results similar to that of the MOMGA, but

in a more efficient manner (2001:14).

 The algorithm selected as the MOP tool is the MOMGA-II. Van Veldhuizen

comments that “although no guarantor of continued success, any search algorithm giving

effective and efficient results over the test suite might be easily modified to target

specific problems” (1999:5-7). MOMGA-II experimental results on pedagogical

problems are encouraging and its architecture is readily modifiable for the test problem’s

high dimensionality and heterogeneous objectives. The Pareto dominance routine is

simpler to implement when the objectives are either all minimization or all maximization.

Therefore, the target MOP’s first objective is to minimize the multiplicative inverse of

equation (3.11).

MOMGA-II use of memory is illustrated in Figure 9. Memory usage increases

linearly with string length, the slope of which is dependent upon the population size. The

maximum problem length for the target problem is 120 bits (from Table 4), requiring

 55

only 1.36 kB per population member. A suitably equipped PC can accommodate much

larger problems.

String Length vs. Memory Req'd

0

50

100

150

200

250

1
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00
44

00
48

00
52

00
56

00
60

00

String Length (bits)

M
em

or
y

(M
B

)

2048

Population Size

 512

1024

Figure 9. MOMGA-II String Length vs. Memory Required

The first objective is to compare Ptrue and PFtrue from the enumerative approach to

Pknown and PFknown from the MOMGA-II. Since enormous computational resources are

required to enumerate Ptrue and PFtrue beyond index 1 from Table 4, all absolute

comparisons can only be made at a single specified resource level. To explore the

performance of the algorithm on the target MOP, an analysis of selected MOMGA-II

operating parameters can determine the individual impact of those parameters on the

algorithm’s effectiveness.

The No Free Lunch theorem tells us that on average, all search algorithms

perform equally well or equally bad over all problems (Wolpert and Macready, 1996:2).

Therefore, applying a search algorithm without regard for problem domain knowledge

 56

can lead to performance no better than a random search. Two aspects from the research

problem domain to consider are interrelationships between decision variables, decision

variable string length, and application of side constraints.

Each decision variable is a member of two groups: Task Number and MRR Type.

The strongest relationship is the Task Number, as evidenced by equations (B.1) and

(B.2). The strict equality of the decision maker’s task preferences means that for one

decision variable to increase, one or more others from the same Task Number group must

decrease. This is also true for MRR types, but to a far lower extent. The best genotypic

representation for related decision variables would be one that fosters this relationship.

The Building Block Hypothesis suggests a representation that encodes them in close

proximity to one another. This idea can be used in the primordial phase of the MOMGA-

II by using building blocks of size equal to the bitstring representation of the decision

variables.

The traditional binary encoding of decision variables is used for the target MOP.

Since the decision space of target MOP is defined to be in I, the MOMGA-II can be

designed to use either a standard bit string length for each decision variable or bit string

lengths that depend on the size of each decision variable. While the latter economizes on

the memory required for each vector solution, the destruction of information by

recombination may be biased toward the larger representations (assuming that the

random number generator output is normally distributed). Therefore, the representation

length for each decision variable is defined to be that for the largest decision variable.

The algorithm designer typically has two choices when using side constraints to

ensure a feasible region. If the constraints are applied within the algorithmic process in

 57

order to incorporate some problem domain knowledge, solutions that are found to be

infeasible are penalized or thrown out, diminishing their impact on the search. This

works against a GA, which uses the fitness landscape information carried by populations

to direct the search, and risks premature convergence. If the constraints are applied a

posteriori, information from the entire fitness landscape is potentially available to the

algorithm. The resultant unconstrained nondominated front is then culled of infeasible

members. The comparatively larger search space may require a greater number of fitness

evaluations to converge to the Pareto front. It may also be that the unconstrained PFtrue

does not contain any point of the constrained PFtrue.

Since the best approach is unknown, and given limited time to complete this

research, the second objective is to demonstrate the ability of the applied algorithm to

produce level-wise nondominated force mix sets as defined by the model formulation.

Since the constraints in equations (3.8) and (3.9) are not handled explicitly by the

algorithm, the decision variable domains must be specified explicitly using the bitstring

representing each decision variable. This version of the MOMGA-II will use a standard

length binary representation for all decision variables.

Preliminary runs of the MOMGA-II on the target MOP using index 1 of Table 4

and the parameters listed in Table 7 generated no feasible solutions. Referring to Figure

10, the objective space of the target MOP at the lowest resource level defines a point

mass feasible field. This is a particularly difficult problem for any optimization method.

When an algorithm finds itself at any feasible point, it is surrounded by infeasible points

of varying density. There is no guarantee that the next move off of a feasible point will

result in another feasible point.

 58

Figure 10. Three Views of the Target MOP Tri-objective Space for Resource Level 1

For Resource Level 1, the probability of selecting a feasible point is given by the

quotient of the decision space cardinality and the binary value of the chromosome length

(assuming a one-to-one mapping of the decision space to the objective space):

 13
60

630,630 5.47x10
2

−≈ (3.24)

Since the building blocks found by the algorithm are the result of converging to

the infeasible front, the use of initially random templates was discarded in favor of user

selected templates that are corrected to be feasible. The templates are defined prior the

 59

start of the run, are different for each objective, and are not updated with the best

individual after each era. Preliminary results indicate that this approach effectively

stimulated the algorithm’s search in feasible space.

Performance Measures

If PFtrue is known, the Final Generational Distance metric can be used to

characterize how “far” PFknown is from PFtrue:

1

1

n p
p

i
i

d
G

n
=

∑

 (3.25)

where n is the number of vectors in PFknown, p = 2, and di is the Euclidean distance

between each vector and the closest element of PFtrue (Van Veldhuizen, 1999:6-15).

 An MOEA adds elements to PFknown over a number of generations. The number

of nondominated vectors that are added can vary depending on how much of the

objective space that the algorithm is allowed to explore. The Overall Nondominated

Vector Generation (ONVG) metric can be used to measure how “good” an MOEA is at

generating desired solutions given a fixed fraction of search space to explore (Van

Veldhuizen, 1999:6-18):

 knownONVG PF (3.26)

Alone, this metric says nothing about the quality of PFknown. Even if an MOEA’s ONVG

is equivalent to the number of vectors in PFtrue, it may be that PFtrue does not contain any

element of PFknown. The Error Ratio metric takes this into consideration in order to

characterize how well PFknown converges to PFtrue:

 60

 1

n

i
i

e
E

n
=
∑

 (3.27)

where n is the number of vectors in PFknown and

0 if vector , (1, ,) ,
1 otherwise

true
i

i i n PF
e

= ∈
=

…
 (3.28)

(Van Veldhuizen, 1999:6-14).

Experimental Design

Computational Environment. The MOMGA-II is written in ANSI C and compiled

using the Sun WorkShop Compiler version C 4.2. It can be executed in any UNIX /

LINUX environment. For this research, the execution platform is a Sun Ultra 10

workstation equipped with a 450 MHz processor, 1 GB RAM, and Solaris 2.8.

The target MOP is a discrete mapping from the integers to 3 . On a computer,

real number representation is dependent on machine specific resolution. Therefore,

determination of PFtrue is machine dependent. However, for the three objectives—

suitability, weight, and volume—accuracy on the order of 10-6 and beyond is not an issue.

Exhaustive deterministic enumeration is needed to find Ptrue and PFtrue, limited by

machine specific resolution, of course. A program that performs this task was written in

ANSI C and compiled using Microsoft Visual C++ 6.0. The source code for this program

is presented in Appendix C. The program code was not optimized and uses only a single

list to maintain Pknown and PFknown. The program was executed on a Dell Precision 610

equipped with a Pentium II 500MHz processor, 2GB RAM, and using Windows 2000

Professional. It was observed that this platform initially processes on average 40,000

 61

solutions per minute but that this rate decreases exponentially with each additional

solution. Using this program, complete enumeration of scenarios beyond index 1 in

Table 4 would exceed the time requirement for this thesis by centuries. Therefore,

absolute comparisons are only made between the enumerated Ptrue / PFtrue and the

MOMGA-II Pknown / PFknown for index 1 in Table 4. The enumerated PFtrue and Ptrue is in

Appendix D.

Experiments. The first objective is to compare, in terms of absolute performance,

the output of the MOMGA-II to the baseline exhaustive enumeration solution in order to

tune the algorithm to the MOP formulation. There is no definitive answer as to whether

this comparison should be made in decision or objective space. This decision is typically

left to personal preference. For this research, objective space comparisons are preferred

because of the high-dimensionality of the decision space. For statistical comparison

purposes, all results will be taken from 30 replications of the MOMGA-II using a

different random number generator seed each time. The random() function in the

random.c file generates a single random number between 0.0 and 1.0 using the

subtractive method described in (Knuth, 1981).

The second objective is to demonstrate the ability of the implicitly constraining

MOMGA-II to produce level-wise nondominated force mix sets as defined in the section

on model formulation. The third objective is to examine how execution time responds to

target MOP problem size. These three objectives are met through the following

experiments—absolute performance response to parameter changes, execution timing,

and the demonstration of level-wise nondominated force mix sets.

 62

Absolute Performance Response to Parameter Changes. The goal of this

experiment is to identify how MOMGA-II effectiveness changes with different key

parameter settings. There are no studies that show which parameters and what values are

key to good performance for MOEAs (Van Veldhuizen, 1999:6-7). While a complete

parameter analysis is warranted in this case, the allotted time for this research is limited

and only certain primary operators and values can be investigated.

Experimental Parameters. The relationship between decision variables

may affect algorithm performance. Different building block ranges will be used to take

advantage of this possible relationship. In the MOMGA-II, search is primarily

accomplished through building block filtering, splicing, and selection. The probability of

cutting a string will be changed to investigate its affect on algorithm effectiveness. One

of these settings will be a zero probability of cutting, placing the burden of search on

building block filtering, splicing, and tournament selection. The splice operator used in

the juxtapositional phase is the primary method of string composition in the MOMGA-II.

Its probability will be reduced to reveal its affect on performance. Finally, initial

population size affects the amount of fitness landscape information, and therefore

building blocks, available to building block filtering. PFtrue will be compared to the

results of the MOMGA-II by individually applying each of the parameter settings listed

in Table 6. to the base settings listed in Table 7. A total of nine alternative parameter

settings are used, each with 30 replications. The metrics G, ONVG, and E are used to

quantitatively compare the alternatives.

 63

Table 6. Experimental Parameter Settings

PARAMETER SETTINGS
BB size { 2, 4, 8 }

pcut { 0, 0.2, .2}
psplice { 1.0, 0.8, 0.6 }

init. pop size { 600, 915, 1200 }

Table 7. MOMGA-II Parameter Settings

PARAMETER SETTING
pcut 0.2

psplice 1.0
pm 0.0
tdom 3
σshare Equation (2.18)
eras 4

Initial population size 915
termination average string length ≈ problem size

Execution Timing. This analysis does not take into account the additional

run time needed to obtain an acceptable level of convergence and looks only at how

execution timing is affected by increasing the problem size. For each index in Table 4,

and using the base parameter settings in Table 7, a time hack will be taken from program

start to the end of the juxtapositional phase in era 4. Thirty replications are used for each

index to provide a good statistical sample.

Demonstration of Level-wise Nondominated Force Mix Sets. The goal of

this experiment is to demonstrate the ability of the MOMGA-II to produce level-wise

nondominated force mix sets in the absence of explicit constraint handling methods.

 64

Since Ptrue and PFtrue are unknown for scenarios beyond index 1, no statistical

comparisons are made. Of particular interest is non-dominated set cardinality after

applying the constraints.

MOMGA-II Parameter Settings. Unless otherwise stated, each replication of the

MOMGA-II is performed using the settings listed in Table 7. Except for the termination

rule, the listed parameter settings are the “default” settings used in previous research

(Van Veldhuizen, 1999, Zydallis, et al. 2001b). The termination rule was selected to

allow runs with larger building block sizes to be less dependent on template fitness.

Summary

This chapter addressed the second research question by presenting a model to

describe the inputs and outputs to a MOP tool and formulating the research problem

MOP in terms of its decision variables, objective functions, and constraints. The target

MOP was constructed using inputs that provide linkage between this thesis and

concurrent ALP research, and also create a search space of sufficient size with which to

evaluate the MOP tool.

After discussing the selection of the MOMGA-II as the MOP tool, the

experimental objectives, metrics, and key MOMGA-II parameter settings were presented

in order to address the third research question: how to evaluate the selected MOP

methodology. The chapter concluded with a discussion of the computational

environment and the three experiments designed to meet experimental objectives. The

next chapter addresses the fourth research question by analyzing MOMGA-II

effectiveness and efficiency when applied to the target MOP.

 65

IV. Results

Introduction

The previous chapter outlined the experimental methodology used to apply the

MOMGA-II in three comparative experiments. This chapter focuses on the last research

question, which addresses MOMGA-II solution quality and efficiency as it pertains to the

research problem of optimizing MRR suitability and lift cost. The sections that follow

present the analysis of the experimental data and report the results.

First, the results from parametric testing form the basis for an absolute

comparison of the MOMGA-II to PFtrue for a single resource level. Next, execution

timing results are used comment on the time complexity of the MOMGA-II as it relates

to problem scale. Finally, the results from level-wise runs are used to demonstrate the

ability of the implicit constraint handling MOMGA-II to produce non-dominated sets of

force mixes corresponding to various sortie resource levels.

Statistical Analysis

Absolute Performance Comparison. The sample data for Final Generational

Distance, Figure 13 in Appendix F, suggests that the population distributions are not

normal, requiring non-parametric methods for statistical comparisons. The technique

employed, the Kruskal-Wallis H-test, assumes that the samples are random and

independent, at least five measurements in each sample, and that the probability

 66

distributions from which the samples are drawn are continuous (McClave, et al.,

1998:892). These assumptions are satisfied and so the following hypotheses are tested:

H0: The probability distributions of the parameter groups for the G metric
are the same.

HA: At least two of the groups are different.

 The H-test in Figure 13 of Appendix F was accomplished using JMPIN 4.0.2. At

the 0.1 significance level, the observed significance level of 0.15 indicates that there is

insufficient evidence to reject H0.

The ONVG sample data across the parameter groups are only borderline normally

distributed and so the Kruskal-Wallis H-test is also applied here (Figure 14 in Appendix

F). The ONVG sample data are cardinal and therefore Poisson distributed (Reynolds,

2001). For a large ONVG range (in this case from 0 to 630,630) the assumption of a

continuous distribution is reasonable (Reynolds, 2001). The following hypotheses are

tested:

H0: The probability distributions of the parameter groups for the ONVG
metric are the same.

HA: At least two of the groups are different.

 At the 0.1 significance level, the observed significance level of 0.29 indicates that

there is insufficient evidence to reject H0.

These results show that using implicit constraint handling, MOMGA-II

convergence properties and non-dominated set cardinality are not significantly affected

by the choice of selected parameter values within the range tested. When infeasible

solutions are not explicitly dealt with by the algorithm, it is relying primarily upon

building block filtering and the juxtapositional generations to select and combine good

 67

building blocks into feasible solutions. Target MOP pilot runs of the MOMGA-II

without any modifications to the algorithm resulted in no feasible solutions at all. By

simply specifying a feasible template for each objective and carrying them forward every

era, non-dominated set cardinality improved to a mean of 5 with a standard deviation of

0.4.

Referring to Figures 15 – 23 in Appendix G, the three-dimensional plots of PFtrue

and PFknown for each parametric alternative allow qualitative assessments of MOMGA-II

performance. Although the MOMGA-II never found any solutions in PFtrue, the PFknown,

nearly all of the non-dominated sets approximate the structure of PFtrue and some of the

solutions are very close to the front. That this occurred without the incorporation of any

explicit constraint handling methods is indicative of the algorithm’s robustness.

Execution Timing Analysis. This analysis does not take into account the

additional run time needed to obtain acceptable level of convergence, looking only at

how execution timing is affected by increasing the problem size. In all cases, the

MOMGA-II completed 4 eras in under 25 seconds. It is seen from Figure 11 that within

the range of 60 to 120 bits, execution time increases nearly linearly.

Without extrapolating, it is difficult to see how execution time responds to scaling

up the test MOP to a real world size problem with seven basic aerospace missions and on

the order of 100 or more MRR types. This preliminary result suggests that on the tested

platform, MOMGA-II execution timing may scale linearly or possibly quadratically with

chromosome length.

 68

Figure 11. Problem Size vs. Execution Time

Demonstration of Level-wise Nondominated Force Mix Sets. The feasible

solution set cardinalities for the two lowest resource levels are both six. The MOMGA-II

found no nondominated feasible solutions at any of the other resource levels. The

fractions of feasible points to total points corresponding to each resource level differ from

each other by approximately an order of magnitude:

5
-13

1 60

8
-15

2 75

12
-15

3 90

16
-16

4 105

19
-17

5 120

6.30 x 10 5.47 x 10
2

1.60 x 10 4.22 x 10
2

2.56 x 10 2.07 x 10
2

1.48 x 10 3.65 x 10
2

4.37 x 10 3.29 x 10
2

RL

RL

RL

RL

RL

≈ ≈

≈ ≈

≈ ≈

≈ ≈

≈ ≈

Problem Size vs. Execution Time

y = 2.8926x + 7.6828
R2 = 0.9975

10

12

14

16

18

20

22

24

60 75 90 105 120
Chromosome Length (bits)

Ti
m

e
(s

ec
on

ds
)

Mean
UCL
LCL
Linear (Mean)

 69

The fractions of feasible space are not grossly smaller at progressively larger

resource levels and may not completely account for the algorithm’s inability to find

feasible, nondominated solutions above resource level two. With random population

initialization, the algorithm may be misled right off the bat by starting with infeasible

members. Nor does the use of feasible templates guarantee that feasible building blocks

will be found during building block filtering. The same feasibility problems apply to the

operations in the juxtapositional phase. Since the templates are not updated with the best

found individual for each objective, this version of the MOMGA-II operates with a

handicap. The overall result is that the algorithm is drawn to an infeasible front.

A recently updated version of the MOMGA-II incorporates a solution repair

function that iteratively adjusts bits in a random manner until a solution becomes feasible,

restricting the search to feasible space. The target problem was applied to the algorithm,

but due to time constraints, proper tuning and complete analysis was not performed.

Preliminary results are promising. Using the same base case parameters, random seeds,

and 30 replications, the reported metrics in Table 8 are greatly improved.

Table 8. Explicit Constraint Metrics

 MEAN STANDARD
DEVIATION

MEDIAN

G 5.2 7.7 0.1
ONVG 22.7 1.5 23

E 49.8 7.7 47.9

When results are combined over 4 replications, the MOMGA-II finds all 26 points in

PFtrue for Resource Level 1.

 70

 When applied to Resource Levels 1 through 5, the MOMGA-II was able to

produce feasible, equally preferred force mixes with the cardinalities listed in Table 9.

Three-dimensional plots of PFknown for each level (Appendix F) suggest that a solution

basic structure is maintained over all problem scales.

Table 9. Explicit Constraint MOMGA-II ONVG by Resource Level.

RESOURCE
LEVEL ONVG

1 26
2 70
3 131
4 215
5 301

Summary

 This chapter answers research question four by presenting experimental analyses

and results for three experiments that address the experimental objectives: absolute

performance response to parameter changes, execution timing, and the demonstration of

level-wise nondominated force mix sets. Overall, the results reveal the MOMGA-II’s

robustness and linear execution time (on the range tested), and show that implicit

constraint handling as applied to the MOMGA-II does not go far enough to prevent

convergence to an infeasible front. Preliminary results of an explicit constraint handling

version of the MOMGA-II show greatly improved performance.

 71

V. Conclusion

Introduction

Chapter I began with the motivation of this research, stating that the Defense

Advanced research Projects Agency’s Advanced Logistics Project (ALP) seeks to bring

campaign planning into the 21st century with multiple, real-time deployment plans and

rapid replanning. We can capitalize further on what ALP brings to the table by providing

a methodology to evaluate multiple plans and provide the warfighter with the best

available package with which to do the job.

As a front-end to ALP, the Mission-Resource Value Assessment Tool (M-R

VAT) intends to assess competing force mixes in terms of their intrinsic task capability

and the campaign specific issues affecting their effective employment in the theater. The

primary goal of this research was to identify force mixes that, in terms of their intrinsic

value, represent the best match of assets to tasks with the smallest deployment footprint.

To accomplish this goal, four research questions answered:

1. Which methodologies can be used to trade-off intrinsic value and deployment

cost (lift) and result in a set of force mixes that are preferred over others?

2. What are the forms of the decision and objective spaces?

3. How is the selected approach evaluated?

4. Does the selected approach result in an acceptable solution to the research

problem in a reasonable amount of time?

A series of research phases was used to answer these questions.

 72

 The first phase was a literature review intended to provide a broad overview of

the multiobjective optimization problem (MOP) class in order to help with the selection

of an appropriate methodology. The review highlighted concepts of MOP formulation,

competing objectives, global versus local optimization, constrained optimization, and

Pareto dominance of solutions. Also reviewed were classical and modern methodologies,

including those from the metaheuristic class. The results of the literature review served

to answer research question 1.

 The next phase of this research incorporated the ALP Pilot Problem (Swartz,

1999) in the definition of the multiobjective model and formulation. The Mission Ready

Resource, defined as a building block of capability, suitability, and deployment cost; the

Task Preference Vector; and the definitions of acceptable force mixes defined the

decision space, objective space, and the problem’s constraints, thus answering research

question 2. This phase also defined the target multiobjective problem used to evaluate

the MOP model and formulation, and their application to the selected MOP methodology.

 An important goal of this research was to incorporate as much problem domain

knowledge as possible into the algorithmic approach. The third phase used the problem

domain knowledge from the model and MOP formulation to select an appropriate MOP

methodology. The Multiobjective Messy Genetic Algorithm (MOMGA-II), shown to

robustly and flexibly handle a variety of difficult pedagogical problems, was selected to

produce the desired nondominated sets of solution, thus answering research question 3.

The algorithm was adapted to the level-wise output requirement of the MOP model. The

MOMGA-II also incorporates implicit constraint handling in order to investigate that

method’s affect on the effectiveness of the algorithm.

 73

Finally, the last phase evaluates the employed methodology based on three

experimental objectives. The first objective was to compare, in terms of absolute

performance, the output of the MOMGA-II to the baseline output of the exhaustive

enumeration solution in order to help tune the algorithm to the MOP formulation. The

second objective was to demonstrate the ability of the implicitly constraining MOMGA-

II to produce level-wise nondominated force mix sets as defined by the model

formulation. The third objective was to examine how execution time responds to target

MOP problem size. The answer to research question 4 is found in the experimental

results showing that implicit constraint handling as applied to the MOMGA-II is not a

viable approach to producing acceptable sets of nondominated force mixes. However,

the results also reveal the MOMGA-II’s robustness and linear execution time (on the

range tested). This, along with the greatly improved solution quality and cardinality

achieved by preliminary runs of the solution repairing MOMGA-II support the viability

of this approach to producing well balance force mixes.

Conclusions

 This research shows that the multiobjective model and problem formulations,

along the with test problem, are constructive approaches to investigating the problem of

force mix selection. The importance of this research is in the illumination of problem

complexity for so abstract a problem. Although simplified by assumptions, the employed

methodology allows us to gauge problem complexity and uncover problem domain

knowledge that must be incorporated into any solution platform. An important aspect of

 74

problem complexity was revealed by mathematically defining the cardinality of the

constrained multiobjective research problem decision space.

A program allowing for deterministic enumeration and Pareto dominance

checking of a large solution space was developed to support the research methodology.

In addition, a post-processing program was developed to analyze MOMGA-II output for

solution dominance, feasibility, and uniqueness. Both programs were essential in

supporting this methodology and have applications beyond it as part of a generic MOP

tool kit.

While implicit constraint handling allows the MOMGA-II complete access to

fitness landscape information, this research demonstrated that such a method is

ineffective when the unconstrained Pareto front does not contain the constrained Pareto

front. Despite this handicap, this research showed the adaptability of the MOMGA-II to

the problem domain and viability of the platform for larger scale problems. Preliminary

results indicate that, without parametric tuning, the solution repair function significantly

contributes to algorithm convergence to feasible, optimal force mixes, warranting further

investigation as an efficient and effective method for identifying well balanced force

mixes.

Limitations

 A number of simplifying assumptions were made for this research: single sortie,

capability, linear suitability, and no limit on available lift or assets. These assumptions

dull the real-world applicability of the devised model and must be dealt with before

employing the model outside of the research realm.

 75

 The execution time experiment was conducted on a chromosome length range

that, until now, had not been attempted. The reality of the situation, however, is that the

number of USAF MRR types ranges in the hundreds and those of our allies compound

this situation. While the “approximately linear” result of the experiment is positive,

extrapolation of the algorithm’s time complexity to a real-world scaled problem is fraught

with peril.

For practical reasons, parametric tests of the algorithm were limited in terms of

range and number of parameters. This constitutes only a coarse tuning and is probably

not the best combination of parameter values to use. As revealed by the literature review

on genetic algorithms, parameter settings are typically problem dependent and little

conclusive research on proper parameter settings exists. Parameter value selection is

more art than science at this point.

A design consideration of the M-R VAT front-end is that it should run on a

Microsoft Windows enabled PC so that it may be widely distributed throughout the

planning community. At this time, the MOMGA-II code executes on Unix and Linux

platforms. Significant effort is needed to port the code to run on a Microsoft platform.

 As part of the methodology, problem domain knowledge was sought out and

applied to the MOP tool when found. There may be elements of the problem that have

escaped the eye of the researcher, elements which, when properly employed can effect

the effectiveness and efficiency of the search algorithm.

The model used in this research is based strictly upon the intrinsic value of force

mixes. The intrinsically scored output of the model is then extrinsically scored to

produce a ranking of force mixes. However, force mixes that have composite intrinsic

 76

and extrinsic values may have a different Pareto front, much less a different fitness

landscape. Extrinsic knowledge constitutes problem domain knowledge and can be

incorporated as part of the MOP formulation. Another tie-breaking methodology would

need to be employed, but this too may also be incorporated as problem domain

knowledge. The choice of where to stop with this reasoning may best depend on how

much problem domain flexibility is lost or gained by the tool—a highly accurate

assessment means nothing if the rules for assessment change and the tool is unable or too

complex to adapt.

Recommendations

 This research was limited in that only an implicit constraint handling method was

employed in the MOMGA-II. Any complete assessment of the algorithm’s utility to the

research problem must include an explicit constraint handling version. Preliminary

results from the MOMGA-II using a solution repair function showed greatly improved

solution quality and cardinality, clearly indicating the direction of future efforts to

identify well balanced force mixes.

When Ptrue or PFtrue is unknown, some of the quantitative metrics employed by

Van Veldhuizen can assess convergence to PFtrue (1999:8-5). Relative quantitative

performance reveals differences between alternatives but offers little in terms of solution

quality. The best assessment is an absolute comparison of a MOP tool’s solution output

to Ptrue or PFtrue. Complete enumeration of all possible solutions is limited, as it is an n2

algorithm, n being the number of solutions in the space. It is recommended to completely

enumerate at least three inflection points (sortie levels) on the Task Preference Vector in

 77

order to quantitatively evaluate a selected algorithm’s solution quality and move beyond

empirical results. The IBM SP computers at both the Aeronautical Systems Center’s

Major Shared Resource Center (ASC MSRC) and the U.S. Army Corps of Engineers

Waterways Experiment Station’s (CEWES) MSRC can be used to deterministically

enumerate all possible solutions for a given MOP at levels that are well beyond the

computational capabilities of mere desktop machines.

Future Research

For the MOP formulated in this research, it is possible that the structure of PFtrue

is not sensitive to problem scale. The advantage in this case is that the search can be

localized to the region of the objective space that PFtrue lies for any number of decision

variables and sortie level. As suggested in the recommendations section, it would be

beneficial to completely enumerate several points on the Task Preference Vector to

explore this possibility.

The research problem can also be applied to two or more different MOP solving

approaches, all of which can be compared to the current deterministic approach in terms

of flexibility, solution quality, ease of implementation, and scalability.

In terms of problem scale, chromosome length is a limiting factor to

computational efficiency. Efficiency can be gained by employing variable length strings

so that the length of the bit string representing a complete decision variable is

independent of the others. This will reduce computer memory overhead and the size of

the search space, but possibly at the expense of bias in favor of operating on longer

length decision variables.

 78

One way to handle the construction of force mix threads is through a post-

processing algorithm. The algorithm operates on level-wise nondominated sets of force

mixes and, starting at the lowest (or highest) resource level, constructs threads iteratively,

taking into consideration all possible feasible threads. However, the worst case

maximum number of threads to construct given K resource levels is

 1
1

K

k k K k
k

n n n n+
=

× × × = ∏ (5.1)

where n is the number of MRRs to expend at a given resource level. Such a potentially

large number of alternative force mixes would overwhelm a decision maker and must

therefore be pared to a reasonable number. A way to do this that considers the best

feasible threads is to use Filcek’s extrinsic scoring model to rank the individual force

mixes for each resource level (2001). Rather than randomly selecting a starting point and

any following points, construction of feasible force mix threads proceeds using the

highest ranked force mixes first. Not all of the possible feasible force mix threads need

be constructed, but those that are constructed are based on the best intrinsically and

extrinsically evaluated force mixes.

Finally, the simplifying assumptions used to initially explore the research problem

may almost certainly have a large impact upon the problem domain and the fitness

landscape. It is recommended that the need for these assumptions be evaluated and,

where needed, supplanted by more realistic modeling information in order to enhance its

operational applicability.

 79

Summary

 The multiobjective optimization problem model and formulation developed for

the Mission-Resource Value Assessment Tool establish the fundamental form and

complexity of force mix selection defined by the ALP Pilot Problem. The research

methodology and its results are the first steps to providing rapid force mix selection based

on task suitability, sortie capability, and the amount of finite lift resources consumed.

Follow-up research is well-positioned to spring forward from this point and develop the

multiobjective force mix assessment tool capable of rapidly providing best value / small

footprint alternative force mixes corresponding to the desires of the warfighter.

 80

Appendix A: Pareto Concepts

MOPs present a set of solutions from a trade-off surface between objectives. To

be better understood, it is necessary to define key Pareto concepts: Pareto Dominance,

Pareto Optimality, the Pareto Optimal Set, and the Pareto Front. Van Veldhuizen’s

definitions are noted for their consistency with theory and are the ones used in this thesis

(1999:2-3):

Pareto Dominance: A vector 1(,)ku u u= … is said to dominate 1(, ,)kv v v= …
(denoted by u v≺) if and only if u is partially less than v , i.e.,
for all {1, , },i k∈ … and there exists an {1, , } such that i i i iu v i k u v≤ ∈ <… .

Pareto Optimality: A solution x ∈Ω is said to be Pareto optimal with respect to
Ω if and only if there is no x′∈Ω for which 1() ((), , ())kv F x f x f x′ ′ ′= = …
dominates 1() ((), , ())ku F x f x f x= = … . The phrase “Pareto optimal” is taken to
mean with respect to the entire decision variable space unless otherwise specified.

Pareto Optimal Set: For a given MOP ()F x , the Pareto optimal set ()P∗ is
defined as:

 * : { such that there is no where () ()}P x x F x F x′ ′= ∈Ω ∈Ω ≺ (A.1)

Pareto Front: For a given MOP ()F x and Pareto optimal set P*, the Pareto front
*()PF is defined as:

 * *

1: { () ((), , ()) | }kPF u F x f x f x x P= = = ∈… (A.2)

P is the set of all solutions whose vectors are non-dominated with respect to all

other vectors in the objective space. When mapped to the objective space, the solutions

in P form the Pareto front, PF.

81

Appendix B: Advanced Logistics Program (ALP) Pilot Problem

A Mission Ready Resource (MRR) is a combination of an asset type and its

resources, e.g. aircraft, pilot, fuel, munitions, support equipment and personnel, etc., that

is designed to have a certain suitability for a single task. MRR suitability to a given task

is measured per sortie on an absolute scale from 0 to 1, with 0 indicating no suitability

and 1 indicating perfect suitability (Johnson, 2001). A combination of MRR types is

defined to be a MRR set or force mix. To demonstrate, assume that a notional aircraft F,

has two configurations, FA and FB, which constitutes two MRR types. Further, if the

aircraft could be prepared and flown three times per day, then it would represent three

MRRs per day. These three MRR’s could either be all FA configurations, or all FB

configurations, or some combination of the two configurations. Finally, assume three

tasks: Suppression of Enemy Air Defenses (SEAD), Air-to-Air (AA), and Combat Air

Support (CAS). Assuming negligible interaction between assets, the preference

relationship between the assets and tasks is illustrated in Table 8.

Table 8. Asset-Mission Task Preference Matrix (A-M TPM) 1 (Swartz, 1999:1)

MRR SEAD AA CAS
FA .3 1 .2
FB 1 .1 .8

The critical physical dimensions of an asset are its pallet weight and pallet

volume. A single MRR requires a given pallet weight and volume to support its

deployment and use for a given sortie. The additional complexity of translating from

 82

MRR space to asset space is beyond the scope of this research, hence the simplifying

assumption that a MRR is equivalent to a single asset that is sampled without

replacement, i.e. flies a single sortie per day.

We can consider a MRR as a building block of 1) task suitability, 2) pallet weight,

and 3) pallet volume. Task suitability, pallet weight and pallet volume are hereafter

referred to simply as suitability, weight, and volume, respectively.

A realistic assumption is that the decision maker’s task preference may change

depending on the number of resources at his / her disposal and the phase of the campaign.

At the termination of a campaign, many if not all deployed resources are expected to

redeploy to their origins or some other location. The ALP Pilot Problem is concerned

strictly with the deployment planning and execution phase. So it also assumed that

resource levels do not decrease, thus modeling a build-up of resources over time; and that

the decision maker does not prefer fewer sorties over time. For instance, given a

relatively low sortie generation level at the beginning of a campaign, a combatant

commander whose goal is air dominance may prefer a ratio of 60 percent AA, 30 percent

SEAD, and only 10 percent CAS. Over time, the sortie generation level increases and the

next campaign phase may emphasize ground attack. This is reflected in the combatant

commander’s task preferences: 20 percent AA, 30 percent SEAD, and 50 percent CAS.

The decision maker’s task preference is explicitly indicated by the number of sorties, i.e.

capability, desired for each task at a given resource level (sorties available). This leads

naturally to a monotonic task preference vector with components that sum to the resource

level. The points at which the ratio of desired capability changes are the inflection

points. This is shown in Figure 12.

 83

Figure 12. Matching Resources to Tasks (Johnson and Swartz, 2000b:16)

At the termination of a conflict, most if not all deployed resources are expected to

redeploy to their origins or some other location. The ALP Pilot Problem is concerned

strictly with the deployment planning phase. Two assumptions are made in the

construction of the preference vector. First, it is assumed that resource levels do not

decrease, thereby modeling a build-up of resources over time. Second, the preference

vector is monotonic, i.e. the decision maker does not prefer fewer missions over time.

We define a campaign phase as the time period where the commander’s mission

preferences remain constant. If the commander would decide that fewer missions were

required—in a possibly different ratio of task types—then a new campaign phase would

begin and the planning process described here would be repeated.

A decision maker can make his / her task capability preferences known at every

feasible resource level, thereby minimizing interpolation error. A model with seven tasks

Each MRR Set:
Collection of Mission-Ready Resources
satisfying a given level/mix of sorties

.
Equivalent MRR
Sets (for a given
sortie mix)

AA CAS SEAD
25 20 45

B1 B2 F1 F2 F3
45 20 0 0 25
45 20 0 1 24
45 20 1 1 23
45 20 1 2 22

. . .

Vector of Mission Preferences over Resources
(Sorties achievable increases along vector)

SEAD

CAS

AA

Each MRR Set:
Collection of Mission-Ready Resources
satisfying a given level/mix of sorties

. Each MRR Set:
Collection of Mission-Ready Resources
satisfying a given level/mix of sorties

.
Equivalent MRR
Sets (for a given
sortie mix)

AA CAS SEAD
25 20 45

B1 B2 F1 F2 F3
45 20 0 0 25
45 20 0 1 24
45 20 1 1 23
45 20 1 2 22

. . .

Equivalent MRR
Sets (for a given
sortie mix)

AA CAS SEAD
25 20 45

B1 B2 F1 F2 F3
45 20 0 0 25
45 20 0 1 24
45 20 1 1 23
45 20 1 2 22

. . .

Vector of Mission Preferences over Resources
(Sorties achievable increases along vector)

SEAD

CAS

AA

Vector of Mission Preferences over Resources
(Sorties achievable increases along vector)

SEAD

CAS

AA

 84

and a maximum resource level of 30 would require 210 task-resource allocation

decisions, unreasonably overburdening the decision maker. Recognizing this, the

Mission-Resource Value Assessment Tool (M-R VAT) model uses a reasonable number

of inflection points to define the preference vector and interpolates preferences for

intermediate points. The resulting interpolation error is assumed to result in a negligible

difference between the preference vector and the decision maker’s true task preferences.

The decision maker has a finite number of force mix choices with which to meet

his / her task preferences. The number of force mixes for a single task is given by the

following equation:

 1,
(1)!

!(1)!k k

k
n m n

k

n mC
n m+ −

+ −=
−

 (B.1)

where nk is the desired sortie level for Task k, and m is the number of MRR types. For p

tasks, the number of force mixes is

 1,
1

k k

p

n m n
k

C + −
=

∏ (B.2)

Using the example in Figure 12, a sortie mix of 25 AA, 20 CAS, and 45 SEAD results in

approximately 5.35x1013 unique force mixes for the decision maker to consider. A look

at the number of aircraft choices and configurations available in today’s Air Force makes

it clear that the number of MRR types ranges in the thousands and that the number of

possible solutions grows unmanageably large.

Since an MRR is a building block of suitability, weight, and volume, the choice of

the best MRR set depends on how it optimizes the three criteria: maximize suitability,

minimize weight, and minimize volume. A MRR set is acceptable if, for a given

 85

resource level, the decision maker is indifferent to the tradeoff between the three criteria

of suitability, weight, and volume. Therefore, the formulation of acceptable force mixes

is a multiobjective problem with competing objectives.

 86

Appendix C: Source Code for ENUMERATION.C

/* ENUMERATION.C v2.4
* Author: Dave Wakefield
* email: wakester@earthlink.net
* Date: 2/6/01
* Reference: Author, "IDENTIFICATION OF PREFERRED OPERATIONAL PLAN

FORCE MIXES USING A
MULTIOBJECTIVE METHODOLOGY TO OPTIMIZE RESOURCE

SUITABILITY AND LIFT COST,"
Masters Thesis. Air Force Institute of Technology,

Wright-Patterson AFB, OH.
* 2001.
* This program performs a complete enumeration of a decision space

defined by 15 decision
* variables. The output is a text file containing in column format the

nondominated
* front for three objectives defined in the evaluate function, and the

corresponding
* decision variables. Objective 1 is maximized, the others are

minimized. The program
* takes as input a report filename and whether screen output of

progress is desired. A
* progress file named 'progress.txt' is created and updated every 100th

solution.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <conio.h>

double *Pcurrent; // Archive for Pareto front
int sizePcurrent; // Number of solutions in Pcurrent, not the
index; includes solutions flagged for removal
double fitness[3] = { 0, 0, 0 }; // initialize fitness vector

void evaluate(double f[], int i1, int i2, int i3, int i4, int i5, int
i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14,
int i15);
int pareto(int n);
double factorial(double a);
double mod(double a, int b);
void clear_kb(void);

main ()
{

int Task1; // DM task 1 preference
int Task2; // DM task 2 preference
int Task3; // DM task 3 preference
int maxX11; // Upper bound for X11 (task 1, MRR type 1)
int maxX12; // Upper bound for X12 (task 1, MRR type 2)

 87

int maxX13; // Upper bound for X13 (task 1, MRR type 3)
int maxX14; // Upper bound for X14 (task 1, MRR type 4)
int maxX15; // Upper bound for X15 (task 1, MRR type 5)
int maxX21; // Upper bound for X21 (task 2, MRR type 1)
int maxX22; // Upper bound for X22 (task 2, MRR type 2)
int maxX23; // Upper bound for X23 (task 2, MRR type 3)
int maxX24; // Upper bound for X24 (task 2, MRR type 4)
int maxX25; // Upper bound for X25 (task 2, MRR type 5)
int maxX31; // Upper bound for X31 (task 3, MRR type 1)
int maxX32; // Upper bound for X32 (task 3, MRR type 2)
int maxX33; // Upper bound for X33 (task 3, MRR type 3)
int maxX34; // Upper bound for X34 (task 3, MRR type 4)
int maxX35; // Upper bound for X35 (task 3, MRR type 5)
int numTasks = 3; // Number of tasks
int numMRRs = 5; // Number of MRR types
int i; // used to print report
int i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12,

i13, i14, i15; // used in for statements
int n; // Counts solutions for Pareto dominance testing
int z; // expression for switch statement
int nondominated; // 1 if solution is nondominated, 0

otherwise
int t; // progress report solution increment
time_t start, finish, time2t; // start, finish, elapsed time

// double aa, bb, cc;
double duration; // program execution time
double cardDS; // Calculated cardinality of the decision

space
double countDS = 0; // Counter for number of solutions

evaluated
double progress; // percentage of cardDS evaluated
FILE *fp1;
FILE *fp2;
char filename[20];
char *progressfile = "progress.txt";
char output, retry;

/* Print program description to screen */
printf("ENUMERATION.C v2.4\nAuthor: Dave Wakefield\nemail:

wakester@earthlink.net\n");
printf("Date: 2/6/01\nReference: Author, IDENTIFICATION OF

PREFERRED OPERATIONAL PLAN");
printf("FORCE MIXES USINGA MULTIOBJECTIVE METHODOLOGY TO OPTIMIZE

RESOURCE SUITABILITY ");
printf("AND LIFT COST, Masters Thesis. Air Force Institute of

Technology, ");
printf("Wright-Patterson AFB, OH. 2001.\n\nThis program performs

a complete enumeration of ");
printf("a decision space defined by 15\ndecision variables. The

output is a text file ");
printf("containing in column format the\nnondominated front for

three objectives defined in ");
printf("the evaluate function, and\nthe corresponding decision

variables. Objective 1 is maximized, the others are minimized. The ");

 88

printf("program takes as input user-defined sortie levels for
Tasks 1\nthrough 3, a report filename, and whether screen output of
progress is ");

printf(" desired.A progress file named 'progress.txt' is created
and updated every 100th\nsolution.\n\n");

/* Get user defined task levels. Allows user reinput levels as
desired. */

while (1) {
puts("\nEnter number of sorties desired for Task 1");
scanf("%d", &Task1);
clear_kb();
puts("\nEnter number of sorties desired for Task 2");
scanf("%d", &Task2);
clear_kb();
puts("\nEnter number of sorties desired for Task 3");
scanf("%d", &Task3);
clear_kb();

/* Calculate decision space cardinality using equation 3.2
in thesis */

cardDS = factorial((double)(Task1 + numMRRs - 1)) / (
factorial((double)(Task1)) * factorial((double)(numMRRs - 1)))

* factorial((double)(Task2 + numMRRs - 1)) /
(factorial((double)(Task2)) * factorial((double)(numMRRs - 1)))

* factorial((double)(Task3 + numMRRs - 1)) /
(factorial((double)(Task3)) * factorial((double)(numMRRs - 1)
));

printf("\nCalculated decision space cardinality = %f\n\n",
cardDS);

printf("Press 'r' to retry, or press Enter to continue.\n"
);

retry = getch();
if (retry != 'r') {

break;
} // end if

} // end while

clear_kb();

puts("Enter filename.");
gets(filename);
puts("\nEnter progress report increment, e.g. 100 for every 100th

solution.\n");
scanf("%d", &t);
puts("\nEnter 's' for screen output of progress, or press Enter to

continue.\n");
output = getch();

/* Open progress file */
if ((fp2 = fopen(progressfile, "w")) == NULL) {

fprintf(stderr, "Error opening progress file.");
exit(1);

} // end if

 89

/* Write header to progress file */
fprintf(fp2, "Solution number\tElapsed time (seconds)\n");
fclose(fp2);

/* allocate memory for 1st nondominated solution (3 fitness values
+ 15 DVs) */

Pcurrent = (double *) realloc(NULL, (18 * sizeof(double)));

/* memory allocation test */
if (Pcurrent == NULL) {

puts("Memory allocation error.");
exit(1);

} // end if

/* initialize 1st solution with negatives if maximizing */
Pcurrent[0] = -1; // max
for (i = 1; i <= 17; i++) {

Pcurrent[i] = 100000000; // min
} // end for
sizePcurrent = 1;

maxX11 = Task1;
maxX12 = Task1;
maxX13 = Task1;
maxX14 = Task1;
maxX15 = Task1;
maxX21 = Task2;
maxX22 = Task2;
maxX23 = Task2;
maxX24 = Task2;
maxX25 = Task2;
maxX31 = Task3;
maxX32 = Task3;
maxX33 = Task3;
maxX34 = Task3;
maxX35 = Task3;

/* Record start time */
start = time(0);

/* increment 1st DV */
for (i1 = 0; i1 <= maxX11; i1++) {

/* increment 2nd DV */
for (i2 = 0; i2 <= maxX12; i2++) {

/* increment 3rd DV */
for (i3 = 0; i3 <= maxX13; i3++) {

/* increment 4th DV */
for (i4 = 0; i4 <= maxX14; i4++) {

/* increment 5th DV */
for (i5 = 0; i5 <= maxX15; i5++) {

 90

/* increment 6th DV */
for (i6 = 0; i6 <= maxX21; i6++) {

/* increment 7th DV */
for (i7 = 0; i7 <= maxX22; i7++) {

/* increment 8th DV */
for (i8 = 0; i8 <= maxX23; i8++) {

/* increment 9th DV */
for (i9 = 0; i9 <= maxX24; i9++) {

/* increment 10th DV */
for (i10 = 0; i10 <= maxX25; i10++) {

/* increment 11th DV */
for (i11 = 0; i11 <= maxX31; i11++) {

/* increment 12th DV */
for (i12 = 0; i12 <= maxX32; i12++) {

/* increment 13th DV */
for (i13 = 0; i13 <= maxX33; i13++) {

/* increment 14th DV */
for (i14 = 0; i14 <= maxX34; i14++) {

/* increment 15th DV */
for (i15 = 0; i15 <= maxX35; i15++) {

/* test that sum of like-task DVs is exactly the DV's
task preference */

if (i1 + i2 + i3 + i4 + i5 == Task1
&& i6 + i7 + i8 + i9 + i10 == Task2
&& i11 + i12 + i13 +i14 + i15 == Task3) {

/* evaluate objective functions */
evaluate(fitness, i1, i2, i3, i4, i5, i6, i7,

i8, i9, i10, i11, i12, i13, i14, i15);

/* initialize counter */
n = 0;

/* initialize nondomination flag; it's only
changed if new solution is dominated */

nondominated = 1;

/* while n < the number of solutions in Pcurrent
*/

while (n < sizePcurrent) {
z = pareto(n);
switch (z) {

 91

/* Solution n in Pcurrent is dominated by
new solution & flagged for removal by setting the 1st

fitness value to a negative number
*/

case 1: {
Pcurrent[18 * n] = -1;
break;

} // end case 1

/* new solution is dominated, stop Pareto
testing, set domination flag */

case 2: {
n = (sizePcurrent);
nondominated = 0;

break;
} // end case 2
/* new solution is indifferent and will be

added to Pcurrent */
default: {

break;
} // end default
} // end switch
n++;

} // end while

/* increment count of solutions evaluated */
countDS++;

/* Diagnostic line */
// printf("%f solutions evaluated\n", countDS);

/* print progress every t solutions evaluated */
if (mod(countDS,t) == 0) {

/* record time every t solutions */
time2t = time(0);

/* Calculate time to process 100 solutions
*/

duration = difftime(time2t, start);

/* Calculate percent complete of all
solutions */

progress = 100 * (countDS / cardDS);

/* Reopen progress file for appending */
if ((fp2 = fopen(progressfile, "a"))

== NULL) {
fprintf(stderr, "Error opening

progress file.");
exit(1);

} // end if

/* Write progress to progress file */

 92

fprintf(fp2, "%f\t%f\n", countDS,
duration);

fclose(fp2);

/* Used when screen output of progress is
desired */

if (output == 's') {
printf("Time to solution %f = %f

seconds.\n", countDS, duration);
printf("%f percent completed\n\n",

progress);
} // end if

} // end if

/* if new solution is nondominated, add new
solution to the end of Pcurrent */

if (nondominated == 1) {

/* here's some more memory; increases by 3
doubles worth of bytes */

Pcurrent = (double *) realloc(Pcurrent,
(18 * sizePcurrent * sizeof(double) + 18 * sizeof(double)));

/* memory allocation test */
if (Pcurrent == NULL) {
puts("Memory allocation error.");
exit(1);
} // end if

/* set values for new memory that was
allocated */

Pcurrent[18 * sizePcurrent] = fitness[0];
Pcurrent[18 * sizePcurrent + 1] =

fitness[1];
Pcurrent[18 * sizePcurrent + 2] =

fitness[2];
Pcurrent[18 * sizePcurrent + 3] = i1;
Pcurrent[18 * sizePcurrent + 4] = i2;
Pcurrent[18 * sizePcurrent + 5] = i3;
Pcurrent[18 * sizePcurrent + 6] = i4;
Pcurrent[18 * sizePcurrent + 7] = i5;
Pcurrent[18 * sizePcurrent + 8] = i6;
Pcurrent[18 * sizePcurrent + 9] = i7;
Pcurrent[18 * sizePcurrent + 10] = i8;
Pcurrent[18 * sizePcurrent + 11] = i9;
Pcurrent[18 * sizePcurrent + 12] = i10;
Pcurrent[18 * sizePcurrent + 13] = i11;
Pcurrent[18 * sizePcurrent + 14] = i12;
Pcurrent[18 * sizePcurrent + 15] = i13;
Pcurrent[18 * sizePcurrent + 16] = i14;
Pcurrent[18 * sizePcurrent + 17] = i15;

/* increment count of solutions in
Pcurrent */

sizePcurrent++;

 93

} // end if
} // end if

} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for
} // end for

} // end for

/* record finish time */
finish = time(0);

/* calculate total execution time */
duration = difftime(finish, start);

/* Reopen progress file for appending */
if ((fp2 = fopen(progressfile, "a")) == NULL) {

fprintf(stderr, "Error opening progress file.");
exit(1);

} // end if

/* Write to progress file */
fprintf(fp2, "%f\t%f\n", countDS, duration);
fclose(fp2);

/* Used if screen output of progress is desired */
if (output == 's') {

printf("\nProgram execution time = %f seconds.\n", duration
);

printf("Calculated decision space cardinality = %f.\n",
cardDS);

printf("Decision space cardinality = %f.\n", countDS);
} // end if

/* Open report file */
if ((fp1 = fopen(filename, "w")) == NULL) {

fprintf(stderr, "Error opening file %s.", filename);
exit(1);

} // end if

/* Write to report file */
fprintf(fp1,"OBJECTIVE 1\tOBJECTIVE 2\tOBJECTIVE

3\tx11\tx12\tx13\tx14\tx15\tx21\tx22\tx23\tx24\tx25\tx31\tx32\tx33\tx34\
tx35\n");

for (i = 0; i < sizePcurrent; i++) {
if (Pcurrent[18 * i] >= 0)

 94

fprintf(
fp1,"%lf\t%lf\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%
f\t%f\n", Pcurrent[18 * i], Pcurrent[18 * i + 1], Pcurrent[18 * i + 2],
Pcurrent[18 * i + 3], Pcurrent[18 * i + 4], Pcurrent[18 * i + 5],
Pcurrent[18 * i + 6], Pcurrent[18 * i + 7], Pcurrent[18 * i + 8],
Pcurrent[18 * i + 9], Pcurrent[18 * i + 10], Pcurrent[18 * i + 11],
Pcurrent[18 * i + 12], Pcurrent[18 * i + 13], Pcurrent[18 * i + 14],
Pcurrent[18 * i + 15], Pcurrent[18 * i + 16], Pcurrent[18 * i + 17]);

} // end for

/* close files and release allocated memory */
fclose(fp1);
free(Pcurrent);

} // end main

void evaluate(double f[], int i1, int i2, int i3, int i4, int i5, int
i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int i14,
int i15)
{

f[0] = .8*i1 + .3*i2 + .6*i3 + .001*i4 + .001*i5 + .4*i6 + .8*i7 +
.6*i8 + .001*i9 + .001*i10 + .001*i11 + .001*i12 + .1*i13 + .8*i14 +
.4*i15;

f[1] = 20.2*(i1 + i6 + i11) + 28.5*(i2 + i7 + i12) + 35.7*(i3 + i8
+ i13) + 19.9*(i4 + i9 + i14) + 22.5*(i5 + i10 + i15);

f[2] = 1650*(i1 + i6 + i11) + 2475*(i2 + i7 + i12) + 2887.5*(i3 +
i8 + i13) + 1705*(i4 + i9 + i14) + 2200*(i5 + i10 + i15);
}

/* Pareto dominance truth table for maximizing objective 1, minimize
objectives 2 and 3 */
int pareto(int n)
{

int m;

if (Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18*n + 2] > fitness[2]

|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] > fitness[2]

|| Pcurrent[18*n] < fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] < fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18*n + 2] > fitness[2]

|| Pcurrent[18*n] < fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] < fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] > fitness[2]) {

/* solution n in Pcurrent is dominated by new solution */
m = 1;
return m;

} // end if

 95

if (Pcurrent[18*n] > fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] < fitness[2]

|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] <
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] <
fitness[1] && Pcurrent[18*n + 2] < fitness[2]

|| Pcurrent[18*n] > fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] < fitness[2]

|| Pcurrent[18*n] > fitness[0] && Pcurrent[18*n + 1] <
fitness[1] && Pcurrent[18*n + 2] == fitness[2]

|| Pcurrent[18*n] > fitness[0] && Pcurrent[18*n + 1] <
fitness[1] && Pcurrent[18*n + 2] < fitness[2]) {

/* new solution is dominated by solution n in Pcurrent */
m = 2;
return m;

} // end if

m = 3;
return m;

}

double factorial(double a)
{

if (a == 1)
return 1;

else {
a *= factorial(a - 1);
return a;

}
}

double mod(double a, int b)
{

double c;

/* using ceil function since I can't find a rounding funtion */
c = ceil(fmod(a, (double)b) * b);
return c;

}

void clear_kb(void)
{

/* Clears stdin of any waiting characters. */
char junk[80];
gets(junk);

}

 96

Appendix D: Ptrue and PFtrue for Table 4, Index 1

1

 97

Appendix E: Source Code for Pareto_processing.c

/*===========================
Pareto_processing.c V2.2
2/18/01
Dave Wakefield & Jesse Zydallis. Thanks to Matt Johnson.
Side constraint, Pareto check, & clone check program.
This program will take the data points and remove those that are
1) infeasible, 2) dominated, and 3) clones. These three routines are
run successively on an input file, generating a report after each
routine. However, input and output file names are hard coded, along
with defined parameters. The data array size in the main function is
also hard coded.
=========================*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_DVS 15;
#define NUM_FUNCS 3;
#define MAX_COLS 18;
#define MAX_PTS 40000; /* set very high since number of solutions is
unknown */
#define PAGEWIDTH 63;
#define REPS 30;
#define MAXIMIZATION_FLAG 0; /* 1 means max */

int num_DVs, num_funcs;
num_DVs = NUM_DVS;
num_funcs = NUM_FUNCS;

int constraint(double *ex);
void is_par(char *filename, int rows, int file_num);
void is_clone(char *filename, int rows, int file_num);

main() {

register int i, j, m; /* for loop indices */
int pass; /* represents boolean result from constraint test */
int nind, column; /* counts input file rows and columns */
int total; /* used to detect end of input file row condition */
int z; /* counts number of feasible solutions */
int reps, max_pts;
double *ex; /* array holding DVs for single solution */
double number; /* temp var used to read in data from input file

*/
FILE *fp, *fp2; /* fp reads, fp2 writes */
char file1[30], file2[30]; /* file1 and file2 names */
double data[40000][18]; /* array to hold input file data */

total = MAX_COLS;

 98

reps = REPS;
max_pts = MAX_PTS;

/* outer loop used to process input files from all replications
*/

for (m = 1; m <= reps; m++) {
/* set file1 to desired input file name and open it for

reading */
if (m < 10) {

sprintf(file1, "e1_r0%d.pts", m);
} else {

sprintf(file1, "e1_r%d.pts", m);
} /* end if */
if ((fp = fopen(file1, "r")) == NULL) {

fprintf(stderr, "Error opening file %s.", file1);
exit(1);

} /* end if */

column = nind = z = 0;

/* read in data from input file */
while((fscanf(fp, "%lf", &number))!=EOF){

data[nind][column] = number;
column++;
column%=total; /* detects end of row */
if (column==0) { /* if end of row, move to next row

*/
nind++;

if (nind==max_pts) {
printf("Too many data points for

side_constraint.\n");
printf("Increase 'MAX_PTS'\n");
exit(1);

} /* end if */
} /* end if */

} /* end while */
fclose(fp);

/* allocate memory to hold a row of DVs and OFs */
if(!(ex = (double *)malloc(total*sizeof(double)))) {

fprintf(stderr, "Insufficient memory for variable,
ex.\n");

} /* end if */

/* set file2 to desired out file name and open it for
writing */

if (m < 10) {
sprintf(file2, "e1_r0%d.feas", m);

} else {
sprintf(file2, "e1_r%d.feas", m);

} /* end if */
if ((fp2 = fopen(file2, "w")) == NULL) {

fprintf(stderr, "Error opening file %s.", file2);
exit(1);

 99

} /* end if */

/* this loop checks each row of data array for feasibility
*/

for (i = 0; i < nind; i++) {

for (j = 0; j < num_DVs; j++) {
*(ex+j) = data[i][j];

} /* end for */

pass = constraint(ex);
if (pass == 1) {

for (j=0; j< total; j++) {
fprintf(fp2, "%3.14f ", data[i][j]);

} /* end for */
fprintf(fp2, "\n");
z++;

} /* end if */
} /* end for */
fclose(fp2);

/* pass feasible points file to Pareto check */
is_par(file2, z, m);

} /* end for */
} /* end main */

int constraint(double *ex)
{

/* printf("ex = %f\n",*ex); */
/*insert function here*/

if (((*ex + *(ex+1) + *(ex+2) + *(ex+3) + *(ex+4)) == 10.0) &&
((*(ex+5) + *(ex+6) + *(ex+7) + *(ex+8) + *(ex+9)) == 5.0)

&&
((*(ex+10) + *(ex+11) + *(ex+12) + *(ex+13) + *(ex+14)) ==

1.0)
) {
return (1);

} else {
return (0);

}
/* if ((*ex*(*ex)+ *(ex+1)*(*(ex+1))<=225) && ((*ex-3*(*(ex+1))
)<=-10))*/
}

/*==
function : is_par

purpose : finds pareto optimal points

developed : 2001 from newis_par.c by Matt Johnson

modified by Dave Wakefield & Jesse Zydallis
===*/
void is_par(char *filename, int rows, int file_num)

 100

{
register int i, j, k;
int flag1, flag2, count, rank, total, maximizationflag;
FILE *fp, *fp2;
double number, *answer_data, *answer_ptr;
double *data, *ptr1, *ptr2, *ptr3;
double frac_par;
char file1[30];

maximizationflag = MAXIMIZATION_FLAG;
total = num_DVs + num_funcs;

printf("Inside Pareto Analysis Routine!!!\n");

data = (double *)malloc(rows*total*sizeof(double)) ;
if (data==NULL) {

fprintf(stderr,"Not enough memory for output data.\n");
} /* end if */

answer_data = (double *)malloc(rows*total*sizeof(double)) ;
if (answer_data==NULL) {

fprintf(stderr,"Not enough memory for output data.\n");
} /* end if */

/* open feasible data file, *.feas */
if ((fp = fopen(filename, "r")) == NULL) {

fprintf(stderr, "Error opening file %s.", filename);
exit(1);

} /* end if */

ptr1 = data;

while((fscanf(fp, "%lf", &number))!=EOF){
*ptr1=number; /*input all the data*/
ptr1++;

} /* end while */

fclose(fp);

count=0; /*will be the number of pareto optimal
pts*/

if (maximizationflag==0) { /*a minimization problem*/
for (i=0; i<rows; i++) {

ptr1=data+i*total; /*beginning of each row*/
rank=rows;
ptr2=ptr1+num_DVs; /*start at f1 for each row*/
for (j=0; j<rows; j++) {

ptr3=data+j*total+num_DVs; /*go through all
rows*/

flag1=flag2=0;
for (k=0;k < num_funcs; k++) { /*go

through all the functions of a row*/
if ((*(ptr2+k))<(*(ptr3+k))) {

 101

flag1++; /*row can't be
dominated so break*/

break;
} /* end if */
if ((*(ptr2+k))==(*(ptr3+k))) {

flag2++;
} /* end if */

} /* end for */
if (flag1>0 || flag2 == num_funcs) { /*non-

dominated || same row*/
rank--;

} else {
break; /*a row is dominated,

move on*/
} /* end if */

} /* end for */
if (rank==0) {

answer_ptr=answer_data+count*total; /*move down
count rows*/

for(j=0; j<total; j++) {
(answer_ptr+j)=(ptr1+j); /*take

points and function values*/
} /* end for */
count++;

} /* end if */
} /* end for */

} else { /*a maximization problem*/
for (i=0; i<rows; i++)
{

ptr1=data+i*total; /*beginning of each row*/
rank=rows;
ptr2 = ptr1 + num_DVs; /* start at f1 for each row

*/
for (j=0; j<rows; j++)
{

ptr3=data+j*total + num_DVs; /*go through all
rows*/

flag1=flag2=0;
for (k=0;k < num_funcs; k++) /*go through all

the functions of a row*/
{

if ((*(ptr2+k))>(*(ptr3+k)))
{

flag1++; /*row can't be
dominated so break*/

break;
}
if ((*(ptr2+k))==(*(ptr3+k)))
{

flag2++;
}

}
if (flag1>0 || flag2 == num_funcs)/*non-

dominated || same row*/
{

 102

rank--;
}
else
{

break; /*a row is dominated,
move on*/

}
}
if (rank==0)
{

answer_ptr=answer_data+count*total; /*move down
count rows*/

for(j=0; j<total; j++)
{

(answer_ptr+j)=(ptr1+j); /*take
points and function values*/

}
count++;

}
}

}
free(data);

if (file_num < 10) {
sprintf(file1, "e1_r0%d.prto", file_num);

} else {
sprintf(file1, "e1_r%d.prto", file_num);

} /* end if */
if ((fp2 = fopen(file1, "w")) == NULL) {

fprintf(stderr, "Error opening file %s.", file1);
exit(1);

} /* end if */
for (i=0; i<(total*count); i++) { /* write the data to the

*.prto file */
fprintf(fp2, "%3.14f ", *(answer_data+i));
if ((i+1)%total==0) { /*would mean finished a whole row*/

fprintf(fp2,"\n");
} /* end if */

} /* end for */
fclose(fp2);

free(answer_data); /*free memory*/

frac_par=(double)count/(double)rows;
printf("%s fraction of pareto optimal points = %3.14f\n", file1,

frac_par);

/* pass Pareto points to is_clone to remove duplicate points */
is_clone(file1, count, file_num);

} /* end is_par */

/*==
function : is_clone

purpose : finds duplicate points

 103

developed : 2001 from newis_par.c by Matt Johnson

modified by Dave Wakefield & Jesse Zydallis
===*/
void is_clone(char *filename, int rows, int file_num) {

register int i, j, k;
int total; /* number of elements in a row */
int count; /* counts the number of unique pareto optimal pts */
FILE *fp, *fp2;
double number, *answer_data, *answer_ptr;
double *data, *ptr1, *ptr2;
char file1[30];

total = num_DVs + num_funcs;

printf("Inside No Clone Routine!!!\n");

data = (double *)malloc(rows * total * sizeof(double)) ;
if (data == NULL) {

fprintf(stderr,"Not enough memory for output data.\n");
} /* end if */

answer_data = (double *)malloc(rows * total * sizeof(double)) ;
if (answer_data == NULL) {

fprintf(stderr,"Not enough memory for output data.\n");
} /* end if */

/* open Pareto points data file, *.prto */
if ((fp = fopen(filename, "r")) == NULL) {

fprintf(stderr, "Error opening file %s.", filename);
exit(1);

} /* end if */

ptr1 = data;

while((fscanf(fp, "%lf", &number)) != EOF){
ptr1 = number; / input all the data */
ptr1++;

} /* end while */

fclose(fp);

count = 0;

/* next 3 for loops compare COLUMN k of ROW i against COLUMN k of
ROW j */

for (i = 0; i < rows; i++) {
ptr1 = data + i * total; /* point to beginning of ROW i */
if (*ptr1 != -1) { /* -1 means the row is a clone and it

won't be tested */
for (j = 0; j < rows; j++) {

ptr2 = data + j * total; /* point to beginning
of ROW j */

 104

if (i != j && *ptr2 != -1) { /* don't want to
compare a row against itself; don't want a duplicate row */

for (k = 0; k < num_DVs; k++) {
if ((*(ptr1 + k)) != (*(ptr2 +

k))) { /* point to COLUMN k */
/* ROW i is not a duplicate of ROW

j, so break to next j */
break;
} /* end if */

if (k == (num_DVs - 1)) { /* if
last DV has been checked, ROW j is a clone of ROW i */

data[j * total] = -1; /* set
ROW j clone flag */

} /* end if */
} /* end for */

} /* end if */
} /* end for */

/* if you get this far, then ROW i, having flagged
any clones of itself, is unique, so copy it to answer_data */

answer_ptr = answer_data + count * total; /* move
down <count> rows to append ROW i to answer_data */

for (j = 0; j < total; j++) {
*(answer_ptr+j) = *(ptr1+j); /* copy DVs

and function values */
} /* end for */

count++;
} /* end if */

} /* end for */

free(data);

if (file_num < 10) {
sprintf(file1, "e1_r0%d.front", file_num);

} else {
sprintf(file1, "e1_r%d.front", file_num);

} /* end if */
if ((fp2 = fopen(file1, "w")) == NULL) {

fprintf(stderr, "Error opening file %s.", file1);
exit(1);

} /* end if */
for (i=0; i<(total*count); i++) { /* write data to the

*.front file */
fprintf(fp2, "%3.14f ", *(answer_data+i));
if ((i+1)%total==0) { /*would mean finished a whole row*/

fprintf(fp2,"\n");
} /* end if */

} /* end for */
fclose(fp2);

free(answer_data); /*free memory*/
printf("%s non-dominated set cardinality = %d\n", file1, count

);
} /* end is_clone */

 105

Appendix F: Raw Data and Experimental Statistics

Table 9. Raw Data for Final Generational Distance

106

Table 10. Descriptive Statistics for Final Generational Distance

107

Table 11. Raw Data for Overall Nondominated Vector Generation

108

Table 12. Descriptive Statistics for Overall Nondominated Vector Generation

109

Figure 13. Kruskal-Wallis H-Test Results for Final Generational Distance

110

Figure 14. Kruskal-Wallis H-Test Results for Overall Nondominated Vector Generation

111

Appendix G: 3D Plots of PFtrue and PFknown Using Alternative Parameter Values

The following figures plot in three dimensions the PFtrue with the PFknown

generated by the implicitly constraining MOMGA-II using the alternative parameter

values specified in the experimental design section of Chapter III. The plots are intended

to show that without employing any explicit constraint handling methods, the MOMGA-

II output approximates the structure of PFtrue.

Figure 15. Plot of PFtrue and PFknown for BB size 4

 112

Figure 16. Plot of PFtrue and PFknown for BB size 8

Figure 17. Plot of PFtrue and PFknown for BB size 2

 113

Figure 18. Plot of PFtrue and PFknown for Pcut = 0

Figure 19. Plot of PFtrue and PFknown for Pcut = 0.2

 114

Figure 20. Plot of PFtrue and PFknown for Psplice = 0.8

Figure 21. Plot of PFtrue and PFknown for Psplice = 0.6

 115

Figure 22. Plot of PFtrue and PFknown for initial population size = 600

Figure 23. Plot of PFtrue and PFknown for initial population size = 1200

 116

Appendix H: 3D Plots of PFknown for Resource Levels 1 –5

The following figures plot in three dimensions for each Resource Level the

PFknown generated by the explicitly constraining MOMGA-II using the basic parameter

values specified in the experimental design section of Chapter III.

Figure 24. PFknown Plotted With PFtrue for Resource Level 1

 117

Figure 25. PFknown Plotted for Resource Level 2

Figure 26. PFknown Plotted for Resource Level 3

 118

Figure 27. PFknown Plotted for Resource Level 4

Figure 28. PFknown Plotted for Resource Level 5

 119

Bibliography

Azar, Shapour, Brian J. Reynolds, and Sanjay Narayanan. “Comparison of Two
Multiobjective Optimization Techniques With and Within Genetic Algorithms,”
Proceeding of the 1999 ASME Design Engineering Technical Conferences. Las
Vegas NV, 12-15 September 1999.

Baumol, W.J. and R.C. Bushnell. “Error Produced by Linearization in Mathematical
Programming,” Econometrica, 35: 447-471 (1967).

Bäck, Thomas. Evolutionary Algorithms in Theory and Practice. New York: Oxford
University Press, 1996.

Bentley, P.J. and J.P. Wakefield. Finding Acceptable Solutions in the Pareto Optimal
Range using Multiobjective Genetic Algorithms. Dept. of Computer Science,
Univ. College London, U.K., 1999.

Buzo, Christopher D. A Decision Support Tool to Aid Campaign Planners in Selecting
Combat Aircraft for Theater Crisis. MS Thesis, AFIT/GEE/ENS/00M-02.
School of Engineering and Management, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 2000.

Carrico, Todd M. “ALP Overview: Background.” Advanced Logistics Project. United
States, Defense Advanced Research Projects Agency. 6 Apr. 2000. n. pag. 10
June 2000. http://www.darpa.mil/iso/alp/Public_Access/Overview/index.htm

Caryl, Matthew. Mutants. no date. n. pag. 20 December 2000.
http://www.catachan.demon.co.uk/Projects/MUTANTS

Chipperfield, Andrew and Peter Fleming. Evolutionary Computation Research: An
Overview of Evolutionary Algorithms for Control Systems Engineering. Dept.
of Automatic Control and Systems Engineering, University of Sheffield,
England. 18 April 2000. n. pag. 24 November 2000.
http://www.shef.ac.uk/~gaipp/control1.html

Coello Coello, Carlos A. “A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques,” Knowledge and Information Systems,
1: 269-308 (August 1999).

Darwin, Charles. The Origin of Species by Means of Natural Selection; or, The
Preservation of Favored Races in the Struggle for Life and The Descent of Man
and Selection in Relation to Sex. First Modern Library edition. New York,
1936.

 120

Deb, Kalyanmoy Multi-Objective Genetic Algorithms: Problem Difficulties and
Construction of Test Problems. Dept of Mechanical Engineering, Indian
Institute of Technology Kanpur, India, 1998.

Deb, Kalyanmoy An Introduction to Genetic Algorithms. Dept of Mechanical
Engineering, Indian Institute of Technology Kanpur, India, 1999.

Deb, Kalyanmoy Multi-Objective Evolutionary Algorithms: Introducing Bias Among
Pareto-Optimal Solutions. Dept of Mechanical Engineering, Indian Institute of
Technology Kanpur, India, 1999.

Deb, Kalyanmoy and Samir Agrawal. Understanding Interactions Among Genetic
Algorithm Parameters. Kanpur Genetic Algorithms Laboratory, Indian Institute
of Technology, Kanpur, India, 1999.

Deb, Kalyanmoy, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multiobjective Optimization: NSGA-
II. Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology,
Kanpur, India, 2000.

Dorigo, Marco and Vittorio Maniezzo. “Parallel Genetic Algorithms: Introduction and
Overview of Current Research,” Parallel Genetic Algorithms: Theory and
Applications. Ed. Joachim Stender. Amsterdam, Netherlands: IOS Press, 1993.
(ISSN: 0922-6389).

Ehrgott, Matthias and Xavier Gandibleux. An Annotated Bibliography of Multiobjective
Combinatorial Optimization. Fachbereich Mathematik, Universitat
Kaiserslautern, Germany, 13 April 2000.

Goldberg, David E., Kalyanmoy Deb, Hillol Kargupta, and Georges Harik. Rapid,
Accurate Optimization of Difficult Problems Using Fast Messy Genetic
Algorithms. Illinois Genetic Algorithms Laboratory, Dept. of General
Engineering, Univ. of Illinois at Urbana-Champaign, Urbana IL, February 1993.

Goldberg, David E., Kalyanmoy Deb, and Bradley Korb. “Messy Genetic Algorithms
Revisited: Studies in Mixed Size and Scale,” Complex Systems, 4:415-444
(1990).

Goldberg, David E., Bradley Korb, and Kalyanmoy Deb. “Messy Genetic Algorithms:
Motivation, Analysis, and First Results,” Complex Systems, 3:493-530 (1989).

Goddard, Matthew W. Estimating Deployed Airlift and Equipment Requirements for F-
16 Aircraft in Support of the Advanced Logistics Project. MS Thesis,
AFIT/GLM/ENS/01M-11. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2001.

 121

Gray Perry, William Hart, Laura Painton, Cindy Phillips, Mike Trahan, and John
Wagner. “Evolutionary Algorithms – General Information,” A Survey of Global
Optimization Methods. Sandia National Laboratories, Albuquerque NM. 10
March 1997. n. pag. November 24, 2000.
http://www.cs.sandia.gov/opt/survey/ts.html.

Filcek, Paul G. A Quantitative Decision Support Model to Aid Selection of Combat
Aircraft Force Mixes for Contingency Deployment. MS Thesis,
AFIT/GLM/ENS/01M-10. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 2001.

Fonseca, Carlos M. and Peter J. Fleming. “Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization,” Genetic Algorithms:
Proceeding of the Fifth International Conference. ed. S. Forrest. San Mateo,
CA: Morgan Kaufmann, July 1993.

Fonseca, Carlos M. and Peter J. Fleming. An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Dept. of Automatic Control and Systems
Engineering, Univ. of Sheffield, U.K., 19 May 1995.

Harel, David. Algorithmics: The Spirit of Computing. Cornwall, Eng: TJ Press, 1987.

Hoffman, Frank. Messy Genetic Algorithms. 14 May 1997. n. pag. http://www.ang-
physik.uni-kiel.de/~hoefi/mga.html.

Horn, Jeffrey, Nicholas Nafpliotis, and David E. Goldberg. Multiobjective Optimization
Using the Niched Pareto Genetic Algorithm. Dept of General Engineering,
University of Illinois at Urbana-Champaign, July 1993.

Johnson, Alan W. Assistant Professor of Logistics Management, Dept. of Operational
Sciences, Air Force Institute of Tech, Wright-Patterson AFB OH. Personal
interview. 13 February 2001.

Johnson, Alan W. and Stephen M. Swartz. AFIT Research IN support of DARPA’s
Advanced Logistics Project. Unpublished briefing. April 5, 2000a.

Johnson, Alan W. and Stephen M. Swartz. Mission-Resource Value Assessment
Technique. Unpublished briefing. ALP Winter Conference. dec00.L&R.ppt
December 2000b.

Judge, Paul J. The Potential Influence of Advanced Logistics on Defense Air
Transportation. Air Force Inst Of Tech, Wright-Patterson AFB OH, School Of
Logistics And Acquisition Management, June 1998. (AD-A354260).

Kargupta, Hillol. Messy Genetic Algorithms: Foundations, Future Directions, and
Applications. n. pag. Computational Methods Group, Los Alamos National
Laboratory, Los Alamos NM, no date.

 122

Knowles, Joshua. and David Corne. “The Pareto Archived Evolution Strategy: A New
Baseline Algorithm for Multiobjective Optimisation,’ Proceedings of the 1999
Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center,
98-105, 1999.

Knuth, D.E., The Art of Computer Programming, 2nd Edition, Vol. 2, Addison-Wesley,
1981. (ISBN 0-201-03822-6)

Lynn, Larry, “DARPA’s Advanced Logistics Program,” National Conference on Setting
an Intermodal Transportation Research Framework. Conference Proceeding
12:13-22. (4-5 March 1996). Washington: National Academy Press, 1997.

Matthews, James K. and Cora J. Holt. So Many, So Much, So Far, So Fast. Washington:
GPO, 1996.

Mathematical Optimization. no date. n. pag. 6 October 2000.
http://www.ccs.uky.edu/csep/MO/NODE2.html.

McClave, James T., P. George Benson, and Terry Sinchich. Statistics for Business and
Economics (7th Edition). Upper Saddle River NJ: Prentice Hall, 1998.

Muczyk, Jan P. “The Changing Nature of External Threats, Economic and Political
Imperatives, and Seamless Logistics,” Airpower Journal: 81-92 (Summer 1997).

Osyczka A. and S. Kundu. “A New Method to Solve Generalized Multicriteria
Optimization Problems Using the Simple Genetic Algorithm,” Structural
Optimization, 10: 94-99 (1995).

Practical Guide to Genetic Algorithms. Chemometrics Research Group, Naval Research
Laboratory, Washington D.C. no date. n. pag. 20 December 2000.
http://chemdiv-www.nrl.navy.mil/6110/sensors/chemometrics/practga.html

Rappe, Andrew M. and Eric J. Walter. The Maxwell-Boltzmann Distribution: A Hands
on Approach. Dept. of Chemistry, Univ. of Pennsylvania, Philadelphia PA. no
date. n. pag. 5 March 2000.
http://oobleck.chem.upenn.edu/~rappe/MB/MBmain.html

Reeves, Colin R. Modern Heuristic Techniques for Combinatorial Problems. London,
Eng: McGraw-Hill, 1995.

Reynolds, Dan E. Assistant Professor of Statistics, Dept. of Mathematics and Statistics,
Air Force Institute of Tech, Wright-Patterson AFB OH. Personal interview. 25
February 2001.

 123

Ruiz-Andio, Alvaro, Lourdes Arauho, Fernando Sáenz, and José Ruz. “A Hybrid
Evolutionary Approach for Solving Constrained Optimization Problems over
Finite Domains,” IEEE Transactions on Evolutionary Computation, 4: 353-372
(November 2000).

Sawaragi, Yoshikazu, Hirotaka Nakayama, and Tetsuzo Tanino. Theory of
Multiobjective Optimization. Orlando FL: Academic Press Inc, 1985.

Shaw, Jane. Evolutionary Computation Research. 2 November 1998. n. pag. 24
November 2000. http://www.shef.ac.uk/~gaipp/mogas.html

Srinivas, N. and Kalyanmoy Deb. “Multi-Objective Function Optimization Using Non-
Dominated Sorting Genetic Algorithms,” Evolutionary Computation, 2(3):221-
248 (1995).

Swartz, Stephen. “ALP Pilot Problem and Derivation of Mathematical Model.”
Unpublished report. Wright-Patterson AFB OH, 1999.

Taber, John T; Balling, Richard; Brown, Michael R; Day, Kirsten; Meyer, Gregory A.
“Optimizing Transportation Infrastructure Planning with a Multiobjective
Genetic Algorithm Model.” Transportation research record. n. 1685. (1999)
pp. 51. (ISSN: 0361-1981)

Van Veldhuizen, David A. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD Thesis, AFIT/DS/ENG/99-01, Air Force
Institute of Technology, Wright-Patterson AFB OH.

Van Veldhuizen, David A. and Gary B. Lamont. “Genetic Algorithms, Building Blocks,
and Multiobjective Optimization,” Genetic and Evolutionary Computation
Conference, July 1999.

Van Veldhuizen, David A. and Gary B. Lamont. “Multiobjective Evolutionary
Algorithms: Analyzing the State-of-the-Art,” Evolutionary Computation, 8(2):
125-147 (2000).

Van Veldhuizen, David A. and Gary B. Lamont. “ On Measuring Multiobjective
Evolutionary Algorithm Performance,” IEEE 2000 Congress on Evolutionary
Computation, 16 – 19 July 2000.

Williams, Thomas J. The Canvas and the Clock - Impact of Logistics at the Operational
Level of War. Naval War College, Newport RI, Dept. of Operations, 17 May
1993. (AD-A266897).

Wolpert, David H. and William G. Macready. No Free Lunch Theorems for Search. The
Santa Fe Institute, Santa Fe NM. 23 February 1996.

Yu, Po-Lung. Multiple-Criteria Decision Making. New York: Plenum Press, 1985.

 124

Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results (Revised Version). Computer
Engineering and Networks Laboratory, Dept. of Electrical Engineering, Swiss
Federal Institute of Technology, Zurich, Switzerland. 22 December 1999.

Zitzler, Eckart and Lothar Thiele. Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Case Study. Swiss Federal Institute of
Technology, Zurich, Switzerland, 1998.

Zydallis, Jesse B. PhD student, Dept. of Computer Engineering, Air Force Institute of
Tech, Wright-Patterson AFB OH. Personal interview. 8 February 2001.

Zydallis, Jesse B., David A. Van Veldhuizen, and Gary B. Lamont. “A Statistical
Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-
II,” 1st International Conference on Multi-Criterion Optimization, Zurich,
Switzerland, 7-9 March 2001.

 125

Vita

On 19 April 1984, then Airman Wakefield enlisted in the U.S. Air Force and

entered training as an Avionics Navigation Systems Specialist. From 1985 to 1992, he

was stationed at Norton AFB, California where he worked on a wide variety of aircraft

including the T-39 and C-141B. In September 1992, he transferred to March AFB,

California where he worked as a Communication and Navigation Systems Specialist on

the KC-10A. While on active duty, he earned a Bachelor of Science degree in

Mathematics from California State University, San Bernardino in 1993.

 In November 1994, he entered Officer Training School. Upon commissioning, he

served as an aircraft maintenance officer at Davis-Monthan AFB, Arizona. During his

two-and-a-half year stay, he was a flight commander for the 358th Fighter Squadron and

the 355th Component Repair Squadron. In January 1998, Capt Wakefield was assigned

as base plans officer for the 24th Wing at Howard AFB, Panama. His tour there

culminated with the successful handover of the installation to the Panamanian

government in accordance with the Carter-Torrijos Treaty of 1977.

In August 1999, he entered the Graduate Logistics Management program at the

Air Force Institute of Technology. Upon graduation, he will be assigned to the ICBM

System Program Office at Hill AFB, Utah

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
20-03-2001

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
1 Mar 2000 – 20 Mar 2001

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
IDENTIFICATION OF PREFERRED OPERATIONAL PLAN FORCE MIXES
USING A MULTIOBJECTIVE METHODOLOGY TO OPTIMIZE RESOURCE
SUITABILITY AND LIFT COST

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)
Wakefield, David J. Jr., Capt, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER
AFIT/GLM/ENS/01M-24

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Dr. Todd Carrico
 DARPA/ISO
 3701 North Fairfax Drive
 Arlington, Virginia 22203-1714
 (703) 526-6616

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 AFIT research in support of the Advanced Logistics Project is directed at developing a Mission-Resource Value Assessment
Tool for rationally assigning relative value to resources and identifying alternative force mixes to logistics and operational planners.
Research of factors that affect force mix composition has been strictly limited to how the operating environment of USAF combat
aircraft influences their performance in specified aerospace missions. In contrast, this research makes use of an aircraft's designed
suitability to perform specified aerospace missions in order to examine the tradeoff between mission suitability and the amount of lift
needed to deploy and operate the asset. An Evolutionary approach was applied to a tri-objective constrained optimization problem
with 15 decision variables with the goal of producing five Pareto optimal sets of force mixes corresponding to five progressively
larger sortie capability levels. Analysis of the results include absolute performance comparisons using different operating parameter
settings, and time complexity in relation to problem scale. Preliminary results were also generated from a version of the algorithm
that uses a solution repair function. These results help to assess the viability of using a multi-objective fast messy genetic algorithm
to identify well balanced force mixes.
15. SUBJECT TERMS
Optimization, Military Planning, Defense Planning, Air Force Planning, Logistics Planning, Logistics Management, Heuristic
Methods
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Lt Col Alan W. Johnson
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

138
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4284
Alan.Johnson@afit.af.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Title
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Problem Statement
	Research Questions
	Research Methodology
	Assumptions
	Scope/Limitations
	Summary

	Literature Review
	Introduction
	MOP Overview
	Modern Methods for Handling MOPs
	Genetic Algorithms
	Summary

	Methodology
	Introduction
	Model Formulation
	MOP Formulation
	Target MOP
	Motivation and Objectives
	Performance Measures
	Experimental Design
	Summary

	Results
	Introduction
	Statistical Analysis
	Summary

	Conclusion
	Introduction
	Conclusions
	Limitations
	Recommendations
	Future Research
	Summary

	Appendix A: Pareto Concepts
	Appendix B: Advanced Logistics Program (ALP) Pilot Problem
	Appendix C: Source Code for ENUMERATION.C
	Appendix D: Ptrue and PFtrue for Table 4, Index 1
	Appendix E: Source Code for Pareto_processing.c
	Appendix F: Raw Data and Experimental Statistics
	Appendix G: 3D Plots of PFtrue and PFknown Using Alternative Parameter Values
	Appendix H: 3D Plots of PFknown for Resource Levels 1 –5
	Bibliography

